
xt, and
ticular
forma-
r studies
ning. It
tion of
t
de that
acked

n;

guage
that is
ta
t many
it is
fi-
Journal of Discrete Algorithms 2 (2004) 137–159

www.elsevier.com/locate/jda

Adaptive text mining:
inferring structure from sequences

I.H. Witten

Department of Computer Science, University of Waikato, Hamilton, New Zealand

Abstract

Text mining is about inferring structure from sequences representing natural language te
may be defined as the process of analyzing text to extract information that is useful for par
purposes. Although hand-crafted heuristics are a common practical approach for extracting in
tion from text, a general, and generalizable, approach requires adaptive techniques. This pape
the way in which the adaptive techniques used in text compression can be applied to text mi
develops several examples: extraction of hierarchical phrase structures from text, identifica
keyphrases in documents, locating proper names and quantities of interest in a piece of text, tex
categorization, word segmentation, acronym extraction, and structure recognition. We conclu
compression forms a sound unifying principle that allows many text mining problems to be t
adaptively.
 2003 Elsevier B.V. All rights reserved.

Keywords:Text mining; Phrase hierarchies; Keyphrase extraction; Generic entity extraction; Text categorizatio
Word segmentation; Acronym extraction; Compression algorithms; Adaptive techniques

1. Introduction

Text mining is about inferring structure from sequences representing natural lan
text, and may be defined as the process of analyzing text to extract information
useful for particular purposes—often called “metadata”. Compared with the kind of da
stored in databases, text is unstructured, amorphous, and contains information a
different levels. Nevertheless, the motivation for trying to extract information from
compelling—even if success is only partial. Despite the fact that the problems are dif

E-mail address:ihw@cs.waikato.ac.nz (I.H. Witten).

1570-8667/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S1570-8667(03)00084-4

http://www.elsevier.com/locate/jda

138 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

cult to define clearly, interest in text mining is burgeoning because it is perceived to have

more
ights
es
oach of
ression
iques.
terial
ation is
e real

ession

d “dic-
s

of text
,
from
l-
t that is
on 2
the size

n used
te
uthor-
s is very
es men-
ssion
in

ethods
aptive

way to
loosely
ses and
ing an-
N

ew.
ssified

at
enormous potential practical utility.
Text compression is about identifying patterns that can be exploited to provide a

compact representation of the text. A relatively mature technology, it offers key ins
for text mining. Research in compression has always taken the pragmatic view that fil
need to be processed whatever they may contain, rather than the normative appr
classical language analysis which generally assumes idealized input. Modern comp
methods avoid making prior assumptions about the input by using adaptive techn
In practice text—particularly text gathered from the Web, the principal source of ma
used today—is messy, and many useful clues come from the messiness. Adapt
exactly what is required to deal with the vagaries of text universally encountered in th
world.

This paper studies the way in which the adaptive techniques used in text compr
can be applied to text mining.

One useful kind of pattern concerns the repetition of words and phrases. So-calle
tionary” methods of compression capitalize on repetitions: they represent structure in term
of a set of substrings of the text, and achieve compression by replacing fragments
by an index into a dictionary. A recent innovation is “hierarchical” dictionary methods
which extend the dictionary to a non-trivial hierarchical structure which is inferred
the input sequence [21]. As well as fulfilling their original purpose of forming an exce
lent basis for compression, such hierarchies expose interesting structure in the tex
very useful for supporting information-browsing interfaces, for example [23]. Secti
describes schemes for generating phrase hierarchies that operate in time linear in
of the input, and hence are practical on large volumes of text.

Keyphrases are an important kind of metadata for many documents. They are ofte
for topic search, or to summarize or cluster documents. It is highly desirable to automa
the keyphrase extraction process, for only a small minority of documents have a
assigned keyphrases, and manual assignment of keyphrases to existing document
laborious. Appropriate keyphrases can be selected from the set of repeated phras
tioned above. In order to do so we temporarily depart from our theme of text compre
and, in Section 3, look at simple machine learning selection criteria and their success
keyphrase assignment.

Returning to applications of text compression, “character-based” compression m
offer an alternative to dictionary-based compression and open the door to new ad
techniques of text mining. Character-based language models provide a promising
recognize lexical tokens. Business and professional documents are packed with
structured information: phone and fax numbers, street addresses, email addres
signatures, tables of contents, lists of references, tables, figures, captions, meet
nouncements, URLs. In addition, there are countless domain-specific structures—ISB
numbers, stock symbols, chemical structures, and mathematical equations, to name a f
Tokens can be compressed using models derived from different training data, and cla
according to which model supports the most economical representation. We will look
this application in Section 4.

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 139

There are other areas in which compression has been used for text mining: text catego-
tion 5,

y
tandard
es have
a

n is de-
o emit
com-
the
s for
rder of
nd

in se-
an
of the
orithms
ucture
nces

re
st-

reedily
ure of

in a
rule
non-

ir head
al-

string
rization, segmentation into tokens, and acronym extraction. We review these in Sec
concluding with more speculative material on structure recognition.

2. Generating phrase hierarchies

Dictionary-based compression methods capitalize on repetitions. In simplest form, the
replace subsequent occurrences of a substring with references to the first instance. S
compression methods are non-hierarchical, but hierarchical dictionary-based schem
recently emerged that form a grammar for a text by replacing each repeated string with
production rule.

Such schemes usually operate online, making a replacement as soon as repetitio
tected. “Online” algorithms process the input stream in a single pass, and begin t
compressed output long before they have seen all the input. Historically, virtually all
pression algorithms have been online, because main memory has until recently been
principal limiting factor on the large-scale application of string processing algorithm
compression. However, offline operation permits greater freedom in choosing the o
replacement. Offline algorithms can examine the input in a more considered fashion, a
this raises the question of whether to seekfrequentrepetitions orlongrepetitions—or some
combination of frequency and length.

This section describes three algorithms for inferring hierarchies of repetitions
quences that have been developed recently for text compression. Surprisingly, they c
all be implemented in such a way as to operate in time that is linear in the length
input sequence. This is a severe restriction: apart from standard compression alg
that produce non-hierarchical structure (e.g., [35]) and tail-recursive hierarchical str
(e.g., [36]), no linear-time algorithms for detecting hierarchical repetition in seque
were known until recently.

2.1. SEQUITUR: an online technique

Online operation severely restricts the opportunities for detecting repetitions, for the
is no alternative to proceeding in a greedy left-to-right manner. It may be possible to po
pone decision-making by retaining a buffer ofrecent history and using this to improve
the quality of the rules generated, but at some point the input must be processed g
and a commitment made to a particular decomposition—that is inherent in the nat
(single-pass) online processing.

SEQUITUR is an algorithm that creates a hierarchical dictionary for a given string
greedy left-to-right fashion [21]. It builds a hierarchy of phrases by forming a new
out of existing pairs of symbols, including non-terminal symbols. Rules that become
productive—in that they do not yield a net space saving—can be deleted, and the
replaced by the symbols that comprise the right-hand side of the deleted rules. This
lows rules that concatenate more than two symbols to be formed. For example, the
abcdbcabcdbcgives rise to the grammar

S → AA

140 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

A → aBdB

he

l string
nsfor-
lly,

ut
es,
all
es in

bol is
pplied

mmar.
.
d side
nces.
rule,

inate
o

umber
he

1
ber of

urring
e

hether
ion

first,

the
ating
B → bc.

Surprisingly, SEQUITUR operates in time that is linear in the size of the input [22]. T
proof sketched here also contains an explanation of how the algorithm works. SEQUITUR

operates by reading a new symbol and processing it by appending it to the top-leve
and then examining the last two symbols of that string. Zero or more of the three tra
mations described below are applied, until noneapplies anywhere in the grammar. Fina
the cycle is repeated by reading in a new symbol.

At any given point in time, the algorithm has reached a particular point in the inp
string, and has generated a certain set of rules. Letr be one less than the number of rul
ands the sum of the number of symbols on the right-hand side of all these rules. Rec
that the top-level stringS, which represents the input read so far, forms one of the rul
the grammar; it begins with a null right-hand side. Initially,r ands are zero.

Here are the three transformations. Only the first two can occur when a new sym
first processed; the third can only fire if one or more of the others has already been a
in this cycle.

1. The digram comprising the last two symbols matches an existing rule in the gra
Substitute the head of that rule for the digram.s decreases by one;r remains the same

2. The digram comprising the last two symbols occurs elsewhere on the right-han
of a rule. Create a new rule for it and substitute the head for both its occurre
r increases by one;s remains the same (it increases by two on account of the new
and decreases by two on account of the two substitutions).

3. A rule exists whose head occurs only once in the right-hand sides of all rules. Elim
this rule, substitutingits body for the head.r decreases by one;s decreases by one to
(because the single occurrence of the rule’s head disappears).

To show that this algorithm operates in linear time, we demonstrate that the total n
of rules applied cannot exceed 2n, wheren is the number of input symbols. Consider t
quantityq = s − r/2. Initially 0, it can never be negative becauser � s. It increases by 1
for each input symbol processed, and it iseasy to see that it must decrease by at least/2
for each rule applied. Hence the number of rules applied is at most twice the num
input symbols.

2.2. Most frequent first

SEQUITUR processes the symbols in the order in which they appear. The first-occ
repetition is replaced by a rule, then the second-occurring repetition, and so on. If onlin
operation is not required, this policy can be relaxed. This raises the question of w
there exist heuristics for selecting substringsfor replacement that yield better compress
performance. There are two obvious possibilities: replacing the most frequent digram
and replacing the longest repetition first.

The idea of forming a rule for the most frequently-occurring digram, substituting
head of the rule for that digram in the input string, and continuing until some termin

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 141

condition is met, was proposed a quarter centuryago by Wolff [33] and has been reinvented
ess
use

es
is
bbed
this
of

igram
e most

his

to be

ngest

,

many times since then. The most common repeated digram is replaced first, and the proc
continues until no digram appears more than once. This algorithm operates offline beca
it must scan the entire string before making the first replacement.

Wolff’s algorithm is inefficient: it takes O(n2) time because it makes multiple pass
over the string, recalculating digram frequencies from scratch every time a new rule
created. However, Larsson and Moffat [16] recently devised a clever algorithm, du
RE-PAIR, whose time is linear in the length of the input string, which creates just
structure of rules: a hierarchy generated bygiving preference to digrams on the basis
their frequency. They reduce execution time to linear by incrementally updating d
counts as substitutions are made, and using a priority queue to keep track of th
common digrams.

For an example of the frequent-first heuristic in operation, consider the stringbabaabaa

baa. The most frequent digram isba, which occurs four times. Creating a new rule for t
yields the grammar

S → AAaAaAa

A → ba.

ReplacingAagives

S → ABBB

A → ba

B → Aa,

a grammar with eleven symbols (including three end of rule symbols). This happens
the same as the length of the original string (without terminator).

2.3. Longest first

A second heuristic for choosing the order of replacements is to process the lo
repetition first. In the same stringbabaabaabaa the longest repetition isabaa, which
appears twice. Creating a new rule gives

S → bAbaA

A → abaa.

Replacingba yields

S → bABA

A → aBa

B → ba,

resulting in a grammar with a total of twelve symbols.
Bentley and McIlroy [2] explored the longest-first heuristic for very long repetitions

and removed them using an LZ77 pointer-style approach before invokinggzipto compress
shorter repetitions. This is not a linear-time solution.

142 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

Suffix trees [12] provide an efficient mechanism for identifying longest repetitions. In
ured in

, which
ence

date
ation)
, in
king a
e done

ribed:
rings
t-first
s can
ength
xper-
in the
rforms

ins
chical
lf
pre-
n

lect
ives an

cuted
f opti-
, so

ses
earch.
ssign-
ble to
a suffix tree, the longest repetition corresponds to the deepest internal node, meas
symbols from the root. The deepest non-terminal can be found by traversing the tree
takes time linear in the length of the inputbecause there is a one-to-one correspond
between leaf nodes and symbols in the string.

We are left with two problems: how to find all longest repetitions, and how to up
the tree after creating a rule. Farach-Colton and Nevill-Manning (private communic
have shown that it is possible to build the tree, and update it after each replacement
time which is linear overall. The tree can be updated in linear amortized time by ma
preliminary pass through it and sorting the depths of the internal nodes. Sorting can b
in linear time using a radix sort, because no repetition will be longer thann/2 symbols.
The algorithm relies on the fact that the deepest node is modified at each point.

2.4. Discussion

It is interesting to compare the performance of the three algorithms we have desc
SEQUITUR, most frequent-first, and longest-first [24]. It is not hard to devise short st
on which any of the three outperforms the other two. In practice, however, longes
is significantly inferior to the other techniques; indeed, simple artificial sequence
be found on which the number of rules it produces grows linearly with sequence l
whereas the number of rules produced by frequent-first grows only logarithmically. E
iments on natural language text indicate that in terms of the total number of symbols
resulting grammar, which is a crude measure of compression, frequent-first outpe
SEQUITUR, with longest-first lagging well behind.

There are many applications of hierarchicalstructure inference techniques in doma
related more closely to text mining than compression [24]. For example, hierar
phrase structures suggest a new way of approaching the problem of familiarizing onese
with the contents of a large collection of electronic text. Nevill-Manning et al. [23]
sented the hierarchical structure inferred by SEQUITUR interactively to the user. Users ca
select any word from the lexicon of the collection, see which phrases it appears in, se
one of them and see the larger phrases in which it appears, and so on. Larus [17] g
application in program optimization, where the first step is to identify frequently-exe
sequences of instructions—that is, paths that will yield the greatest improvement i
mized. Martin [19] has used these techniques to segment the input for speech synthesis
that phonemes can be attached to rules at the appropriate levels.

3. Extracting keyphrases

Automatic keyphrase extraction is a promising area for text mining because keyphra
are an important means for document summarization, clustering, and topic s
Only a minority of documents have author-assigned keyphrases, and manually a
ing keyphrases to existing documents is very laborious. Therefore, it is highly desira
automate the keyphrase extraction process.

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 143

The phrase extraction techniques described above provide an excellent basis for select-
hrases,
earning.
s”

phrase
he ex-
a large
e ex-

.

mation
ntally

hrases
ich all
ch
ssifier is
les
fier,
re, the

. In con-
mploys
nt that
raction

n a set
enetic
ocu-

orward
nd
c-

rom a
ing

ither a
o cat-
logy

roblem
rase”.
a

ing candidate keyphrases. In order to go further and decide which phrases are keyp
we need to step outside the area of compression and use techniques from machine l
We have combined phrase extraction with a simple procedure based on the “naive Baye
learning scheme, and shown it to perform comparably to the state-of-the-art in key
extraction [9]. Performance can be boosted even further by automatically tailoring t
traction process to the particular document collection at hand, and experiments with
collection of technical reports in computer science have shown that the quality of th
tracted keyphrases improves significantly if domain-specific information is exploited

3.1. Background

Several solutions have been proposed for generating or extracting summary infor
from texts [3,14,15]. In the specific domain of keyphrases, there are two fundame
different approaches: keyphraseassignmentand keyphraseextraction. Both use machine
learning methods, and require for training purposes a set of documents with keyp
already identified. In keyphrase assignment, there is a predefined set from wh
keyphrases are chosen—a controlled vocabulary. Then the training data provides, for ea
keyphrase, a set of documents that are associated with it. For each keyphrase, a cla
created from all training documents using theones associated with it as positive examp
and the remainder as negative examples. A new document is processed by each classi
and is assigned the keyphrases associated with those that classify it positively [7]. He
only keyphrases that can be assigned are ones that are in the controlled vocabulary
trast, keyphrase extraction, which forms the basis of the method described here, e
linguistic and information retrieval techniques to extract phrases from a new docume
are likely to characterize it. The training set is used to tune the parameters of the ext
algorithm, and any phrase in the new document is a potential keyphrase.

Turney [29] describes a system for keyphrase extraction, GenEx, that is based o
of parametrized heuristic rules which are fine-tuned using a genetic algorithm. The g
algorithm optimizes the number of correctly identified keyphrases in the training d
ments by adjusting the rules’ parameters. Turney compares GenEx to the straightf
application of a standard machine learningtechnique—bagged decision trees [4]—a
concludes that GenEx performs better. He alsoshows that it generalizes well across colle
tions: trained on a collection of journal articles it successfully extracts keyphrases f
collection of web pages on a different topic.This is an important feature because train
GenEx on a new collection is computationally very expensive.

3.2. Keyphrase extraction

Keyphrase extraction is a classification task. Each phrase in a document is e
keyphrase or not, and the problem is to correctly classify phrases into one of these tw
egories. Machine learning provides off-the-shelf tools for this problem. In the termino
of machine learning, the phrases in a document are “examples” and the learning p
is to find a mapping from the examples to the classes “keyphrase” and “not-keyph
Learning techniques can automatically generate this mapping if they are provided with

144 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

set of training examples—that is, examples that have class labels assigned to them. In the
ntified

mapping
hrases

les that
f doing
bove.

Lovins
, and
hange.
mmed

derive
ttribut-
ber of
ument,
rimi-
cument
uency
n-
in the
nts
imina-

od be-
ibute,
possi-

g the
re-
ayyad
ngth

sumes
ass.
has
e
as
liza-

he

ments
he
context of keyphrase extraction this is simply a set of phrases which have been ide
as either being keyphrases or not. Once the learning scheme has generated the
given the training data, it can be applied to unlabeled data, thereby extracting keyp
from new documents.

Not all phrases in a document are equally likely to be keyphrasesa priori. In order
to facilitate the learning process, most phrases can be eliminated from the examp
are presented to the learning scheme. We have experimented with many ways o
this, most involving one of the hierarchical phrase extraction algorithms described a
Following this process, all words are case-folded, and stemmed using the iterated
method. This involves using the classic Lovins stemmer [18] to discard any suffix
repeating the process on the stem that remains, iterating until there is no further c
The final step in preparing the phrases for the learning scheme is to remove all ste
phrases that occur only once in the document.

Once candidate phrases have been generated from the text, it is necessary to
selected properties from them. In machine learning these properties are called the “a
es” of an example. Several potential attributes immediately spring to mind: the num
words in a phrase, the number of characters, the position of the phrase in the doc
etc. However, in our experiments, only two attributes turned out to be useful in disc
nating between keyphrases and non-keyphrases. The first is the distance into the do
of the phrase’s first appearance. The second, and more influential, is the “term freq
times inverse document frequency”, or TF× IDF, score of a phrase [32]. This is a sta
dard measure used in information retrieval which favors terms that occur frequently
document (“term frequency”) but disfavorsones that occur in many different docume
(“inverse document frequency”) on the grounds that common terms are poor discr
tors.

Both these attributes are real numbers. We use the “naive Bayes” learning meth
cause it is simple, quick, and effective: it conditions class probabilities on each attr
and assumes that the attributes are statistically independent. In order to make it
ble to compute conditional probabilities, we discretize the attributes prior to applyin
learning scheme, quantizing the numeric attributes into ranges so that each value of the
sulting new attribute represents a range of values of the original numeric attribute. F
and Irani’s [8] discretization scheme, which is based on the Minimum Description Le
principle, is suitable for this purpose.

The naive Bayes learning scheme is a simple application of Bayes’ formula. It as
that the attributes—in this case TF× IDF and distance—are independent given the cl
Making this assumption, the probability that a phrase is a keyphrase given that it
discretized TF× IDF value T and discretized distanceD is easily computed from th
probability that a keyphrase has TF× IDF scoreT , the probability that a keyphrase h
distanceD, thea priori probability that a phrase is a keyphrase, and a suitable norma
tion factor. All these probabilities can be estimated by counting the number of times t
corresponding event occurs in the training data.

This procedure is used to generate a Bayes model from a set of training docu
for which keyphrases are known (for example, because the author provided them). T

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 145

resulting model can then be applied in a straightforward way to a new document from

w
om the
ut

plied to
sult

nt col-
ch
aluation
nclude

mount
ents

ing
ra-

phrases
ing
rn
riate

-
sults
docu-
cies. In

ever,
the

ve

ecific
s, just
training

the

to be
ing the
phrases
which keyphrases are to be extracted.
First, TF× IDF scores and distance values arecalculated for all phrases in the ne

document using the procedure described above, using the discretization obtained fr
training documents. (Both attributes, TF× IDF and distance, can be computed witho
knowing whether a phrase is a keyphrase or not.) The naive Bayes model is then ap
each phrase, giving the estimated probability ofthis phrase being a keyphrase. The re
is a list of phrases ranked according to their associated probabilities. Finally, ther highest
ranked phrases are output, wherer is a user-determined parameter.

3.3. Experimental results

We have evaluated this keyphrase extraction method on several different docume
lections with author-assigned keyphrases. Thecriterion for success is the extent to whi
the algorithm produces the same stemmed phrases as authors do. This method of ev
is the same as used by Turney [29], and on comparing our results with GenEx we co
that both methods perform at about the same level.

An interesting question is how keyphrase extraction performance scales with the a
of training data available. There are two ways in which the quantity of available docum
can influence performance on fresh data. First, training documents are used in comput
the discretization of the attributes TF× IDF and distance, and the corresponding pa
meters for the naive Bayes model. It is essential that these documents have key
assigned to them because the learning methodneeds labeled examples. Second, train
documents are used to calculate the document frequency of each phrase, which in tu
is used to derive its TF× IDF score. In this case, unlabeled documents are approp
because the phrase labels are not used.

To investigate these effects we performedexperiments with a large collection of com
puter science technical reports (CSTR) from the New Zealand Digital Library. The re
show that keyphrase extraction performance is close to optimum if about 50 training
ments are used for both generating the classifier and computing the global frequen
other words, 50 labeled documents are sufficient to push performance to its limit. How
we will see in the next subsection that if domain-specific information is exploited in
learning and extracting process, much largervolumes of labeled training documents pro
beneficial.

3.4. Exploiting domain-specific information

A simple modification of the above procedure enables it to exploit collection-sp
knowledge about the likelihood of a particular phrase being a keyphrase. To do thi
keep track of the number of times a candidate phrase occurs as a keyphrase in the
documents and use this information in the form of an additional, third, attribute in
learning and extraction process.

The new attribute only makes sense if the documents for which keyphrases are
extracted are from the same domain as the training documents. Otherwise, bias
extraction algorithm towards phrases that have occurred as author-assigned key

146 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

during training cannot possibly have any beneficial effect. In order to make use of the
action
aining

s the
R col-
er of
set of

phrase
proved
reased
again
ld con-
nt.

es ex-
ction 2

state of

d for
n.
at this

n text
w ap-
known

men-
icularly
ssumed.
ece of
ercent-
text is

tracted.

p-
l

raining
[31].
information provided by the new attribute, it is therefore necessary to re-train the extr
algorithm if keyphrases are to be extracted from documents on a different topic. Tr
time becomes a critical factor.

We have empirically verified that exploiting domain-specific information increase
number of correctly extracted keyphrases by performing experiments with the CST
lection mentioned above [9]. In order to isolate the effect of changing the numb
documents for computing the keyphrase-frequency attribute, we used a separate
documents—the keyphrase-frequency corpus—for counting the number of times a
occurs as a keyphrase. We found that the use of the keyphrase-frequencyattribute im
keyphrase extraction markedly when the size of the keyphrase-frequency corpus inc
from zero (i.e., no keyphrase-frequency attribute) to 100, and improved markedly
when increased from 100 to 1000. The actual set of 130 training documents was he
stant; also, the same set of 500 test documents was used throughout this experime

3.5. Discussion

We conclude that a simple algorithm for keyphrase extraction, which filters phras
tracted using a hierarchical decomposition scheme such as those described in Se
based on the naive Bayes machine learning method, performs comparably to the
the art. Furthermore, performance can be boosted by exploiting domain-specific informa-
tion about the likelihood of keyphrases. The new algorithm is particularly well suite
making use of this information because it canbe trained up very quickly in a new domai
Experiments on a large collection of computer science technical reports confirm th
modification significantly improves the quality of the keyphrases extracted.

4. Generic entity extraction

We now return to our main theme: using the adaptive techniques developed i
compression for the purposes of text mining. In this section and the next, we will revie
plications of character-based compression methods. Throughout this work, the well-
PPM text compression scheme is used [1,6], with order 5 (except where otherwise
tioned) and escape method D [13]. However, the methods and results are not part
sensitive to the compression scheme used, although character-based prediction is a

“Named entities” are defined as proper names and quantities of interest in a pi
text, including personal, organization, and location names, as well as dates, times, p
ages, and monetary amounts [5]. The standard approach to extracting them from
manual: tokenizers and grammars are hand-crafted for the particular data being ex
Commercial text mining software includes IBM’sIntelligent Miner for Text[28], which
uses specific recognition modules carefully programmed for the different data types, A
ple’s Data Detectors[20], which uses language grammars, and theText Tokenization Too
of [11].

An alternative approach to generic entity extraction is to use compression-based t
instead of explicit programming to detect instances of sublanguages in running text

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 147

4.1. An example

iments
f a 4-
t wish
ds;
; phone
nd time
uished;
y should
re is

ypes
ty

to form
ted over
sues.
m part
gh the
etter

same
d the
ym-

in the
d.
rs are
names
e
roups
za-

isam-
xt are
untless

ter are
g

In order to assess the power of language models to discriminate tokens, exper
were conducted with information items extracted (manually) from twenty issues o
page, 1500-word, weekly electronic newsletter. Items of the kind that readers migh
to take action on were classified into generic types: people’s names; dates and time perio
locations; sources, journals, and book series; organizations; URLs; email addresses
numbers; fax numbers; and sums of money. These types are subjective: dates a
periods are lumped together, whereas for some purposes they should be disting
personal and organizational names are separated, whereas for some purposes the
be amalgamated. The methodology we describe accommodates all these options: the
no commitment to any particular ontology.

4.2. Discriminating isolated tokens

The first experiment involved the ability to discriminate between different token t
when the tokens are taken in isolation. Lists of names, dates, locations, etc. in twen
issues of the newsletter were input to the PPM compression scheme separately,
ten compression models. Each issue contained about 150 tokens, unevenly distribu
token types. In addition, a plain text model was formed from the full text of all these is
These models were used to identify each of the tokens in a newsletter that did not for
of the training data, on the basis of which model compresses them the most. Althou
plain text model could in principle be assigned to a token because it compresses it b
than all the specialized models, in fact this never occurred.

Of the 192 tokens in the test data, 40% appeared in the training data (with the
label) and the remainder were new. 90.6% of the total were identified correctly an
remaining 9.4% incorrectly; all errors were on new symbols. Three of the “old” s
bols contain line breaks that do not appear in the training data: for example,
test dataParallel Computing\nJournal is split across two lines as indicate
However, these items were nevertheless identified correctly. The individual erro
easily explained; some do not seem like errors at all. For example, the place
Norman and Berkeley were “mis”-identified as people’s names, time periods lik
Spring 2000 were mis-identified as sources (because of confusion with newsg
like comp.software.year-2000), people’s names were confused with organi
tional names, and so on.

4.3. Distinguishing tokens in context

When tokens appear in text, contextual information provides additional cues for d
biguating them. Identification must be done conservatively, so that strings of plain te
not misinterpreted as tokens—since there are many strings of plain text, there are co
opportunities for error.

Context often helps recognition: e.g., email addresses in this particular newslet
always flanked by angle brackets. Conversely, identification may be foiled by misleadin

148 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

context: e.g., some names are preceded byRep., which reduces the weight of the capital-

s have

ialized
To in-
by

te
a,

nd the

ed

token
n.
9.4%

ken as
two

- and
recog-

be
rticular
llows a
on

forma-

. The

er
l prior
odel
token

ls that
e
ng
output
ization evidence for the following word because capitalization routinely follows a period.
The second experiment evaluated the effect of context by assuming that all token

beenlocatedin the test issue, and the task is toidentifytheir typesin situ. If a stretch of text
is identified as a token of the appropriate type it will compress better using the spec
model; however, begin- and end-token markers must be coded to indicate this fact.
vestigate this, all tokens in the data were replaced by a surrogate symbol that was treated
PPM as a single character (different from all the ASCII characters). A different surroga
was used for each token type. A new model was generated from the modified training dat
and the test article was compressed by this model to give a baseline entropy ofe0 bits. Then
each token in turn, taken individually, was restored into the test article as plain text a
result recompressed to give entropye bits. This will (likely) be greater thane0 because the
information required to represent the token itself (almost certainly) exceeds that requir
to represent its type. Supposeem is the token’s entropy with respect to modelm. Then the
net space saved by recognizing this token as belonging to modelm is e − (e0 + em) bits.
This quantity was evaluated for each model to determine which one classified the
best, or whether it was best left as plain text. The procedure was repeated for each toke

When context is taken into account the error rate per token actually increases from
to 13.5%. However, almost all these “errors” are caused by failure to recognize a to
different from plain text, and the rate of actual mis-recognitions is only 1%—or just
mis-recognitions, one of which is the above-mentionedBerkeley being identified as a
name.

To mark up a string as a token requires the insertion of two extra symbols: begin
end-token, and it is this additional overhead that causes the above-noted failures to
nize tokens. However, the tradeoff betweenactual errors and failures to identify can
adjusted by using a non-zero threshold when comparing the compression for a pa
token with the compression when its characters are interpreted as plain text. This a
small increase in the number of errors to be sacrificed for a larger decrease in identificati
failures.

4.4. Locating tokens in context

Tokens can be located by considering the input as an interleaved sequence of in
tion from different sources. Every token is to be bracketed bybegin-tokenandend-token
markers; the problem is to “correct” text by inserting such markers appropriately
markers also identify the type of token in question—thus we havebegin-name-token, end-
name-token, etc., written as<n>,</n>. Wheneverbegin-tokenis encountered, the encod
switches to the compression model appropriate to that token type, initialized to a nul
context. Wheneverend-tokenis encountered, the encoder reverts to the plain text m
that was in effect before, replacing the token by a single symbol representing that
type.

The algorithm takes a string of text and works out the optimal sequence of mode
would produce it, along with their placement.It works Viterbi-style [30], processing th
input characters to build a tree in which eachpath from root to leaf represents a stri
of characters that is a possible interpretation of the input. The paths are alternative

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 149

strings, andbegin-tokenandend-tokensymbols appear on them. The entropy of a path can
to
to a

l is
as

e
pe
tained,

e up
tree
earch
erefore

a from
ng. The
of 1%
w
nt of
from

he
urther
ntly by

uld be
token
ut the
t very

nd were
ith
tural—
likely

tasks.
be calculated by starting at the root and coding each symbol along the path according
the model that is in force when that symbol is reached. The context is re-initialized
unique starting token wheneverbegin-tokenis encountered, and the appropriate mode
entered. On encounteringend-token, it is encoded and the context reverts to what it w
before.

What causes the tree to branch is the insertion ofbegin-tokensymbols for every possibl
token type, and theend-tokensymbol—which must be for the currently active token ty
so that nesting is properly respected. To expand the tree, a list of open leaves is main
each recording the point in the input string that has been reached and the entropy valu
to that point. The lowest-entropy leaf is chosen for expansion at each stage. Unless the
and the list of open leaves are pruned, they grow very large very quickly. A beam s
is used, and pruning operations are applied that remove leaves from the list and th
prevent the corresponding paths from growing further.

To evaluate the procedure for locating tokens in context, we used the training dat
the same issues of the newsletter as before, and the same single issue for testi
errors and mis-recognitions noted above when identifying tokens in context (rates
and 12.5%, respectively) also occur when locating tokens. Inevitably there were a fe
incorrect positive identifications—2.6% of the number of tokens—where a segme
plain text was erroneously declared to be a token. In addition, 8% of tokens suffered
incorrect boundary placement, where the algorithm reported a token at approximately t
same place as in the original, but the boundaries were slightly perturbed. Finally, a f
4.7% of tokens suffered discrepancies which were actually errors made inadverte
the person who marked up the test data.

4.5. Discussion

We find these initial results encouraging. There are several ways that they co
improved. The amount of training data—about 3000 tokens, distributed among ten
types—is rather small. The data certainly contains markup errors, probably at abo
same rate—4.7% of tokens—as the test file. Many of the mistakes were amongs
similar categories: for example, fax numbers contained embedded phone numbers a
only distinguished by the occurrence of the wordfax; several times they were confused w
phone numbers and this counted as an error. Some of the mistakes were perfectly na
Norman as a name instead of a place, for example. In addition, improvements could
be made to the pruning algorithm.

5. Other text mining tasks

Character-based compression can be applied in many other ways to text mining
Here are some examples.

150 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

5.1. Text categorization

vious

amine
exts to
ne

a-
arning
word
at
g. Be-
he

ith

infor-

t span

ple,

ing

using
graded
ble

stan-
12,902
ned
istribu-
A central feature of the approach to generic entity extraction described in the pre
section is the basic assumption that a tokencan be identified by compressing it according
to different models and seeing which produces the fewest bits of output. We now ex
whether this extends to text categorization—the assignment of natural language t
predefined categories based on their content.Already-classified documents, which defi
the categories, are used to build a model that can be used to classify new articles.

Text categorization is a hot topic in machine learning. Typical approaches extract “fe
tures”, generally words, from text, and use the feature vectors as input to a machine le
scheme that learns how to classify documents. This “bag of words” model neglects
order and contextual effects. It also raises some problems: how to define a “word”, wh
to do with numbers and other non-alphabetic strings, and whether to apply stemmin
cause there are so many different features, a selection process is applied to determine t
most important words, and the remainder are discarded.

Compression seems to offer a promising alternative approach to categorization, w
several potential advantages:

• it yields an overall judgement on the document as a whole, and does not discard
mation by pre-selecting features;

• it avoids the messy problem of defining word boundaries;
• it deals uniformly with morphological variants of words;
• depending on the model (and its order), it can take account of phrasal effects tha

word boundaries;
• it offers a uniform way of dealing with different types of documents—for exam

files in a computer system;
• it minimizes arbitrary decisions that inevitably need to be taken to render any learn

scheme practical.

We have performed extensive experiments on the use of PPM for categorization
a standard dataset [10]. Best results were obtained with order 2; other values de
performance in almost all cases—presumably because the amount of training data availa
is insufficient to justify more complex models.

5.1.1. The benchmark data
All our results are based on the Reuters-21578 collection of newswire stories, the

dard testbed for the evaluation of text categorization schemes. In total there are
stories averaging 200 words each, classified into 118 categories. Many stories are assig
to multiple categories, and some are not assigned to any category at all. The d
tion among categories is highly skewed: the ten largest—earnings, corporate acquisitions,
money market, grain, crude oil, trade issues, interest, shipping, wheat, andcorn—contain
75% of stories, an average of around 1000 stories each.

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 151

5.1.2. Pairwise discrimination
tego-
ments

g
ol

e

tic-
sitive
ry

s
ively,
”. This

-
f
he
rs, we
nt”.

have
each
ng
The

he
ation

t
eneral,

Bayes
utper-
e

Applying a straightforward compression methodology to the problem of text ca
rization quickly yields encouraging results. In the two-class case, to distinguish docu
of classA from documents of classB we form separate modelsMA andMB from the
training documents of each class. Then, given a test document (different from the trainin
documents), we compress it according to eachmodel and calculate the gain in per-symb
compression obtained by usingMA instead ofMB . We assign the document to classA or
B depending on whether this difference is positive or negative, on the principle thatMA

will compress documents of classA better, and similarly forMB . Encouraging results ar
obtained.

5.1.3. Building positive and negative models
To extend to multiply-classified articles, wedecide whether a model belongs to a par

ular category independently of whether it belongs to any other category. We build po
and negative models for each category, the firstfrom all articles that belong to the catego
and the second from those that do not.

5.1.4. Setting the threshold
Deciding whether a new article should in fact be assigned to categoryC or not presents

a tradeoff between making the decision liberally, increasing the chance that an article i
correctly identified but also increasing the number of “false positives”; or conservat
reducing the number of false positives at the expense of increased “false negatives
tradeoff is captured by the standardinformation retrieval notions ofprecision, that is the
number of articles that the algorithmcorrectly assigns to categoryC expressed as a pro
portion of the documents that it assigns to this category, andrecall, that is the number o
articles that the algorithm correctly assigns to categoryC expressed as a proportion of t
articles that actually have this category. To allow comparison of our results with othe
maximize the average of recall and precision—a figure that is called the “breakeven poi

The basic strategy is to calculate the predicted probabilityPr[C|A] of articleA having
classificationC, compare it to a predetermined threshold, and declare the article to
classificationC if it exceeds the threshold. We choose the threshold individually for
class, to maximize the average of recall and precision for that class. To do this the traini
data is further divided into a new training set and a “validation set”, in the ratio 2:1.
thresholdt is chosen to maximize the average of recall and precision for the category (t
breakeven point) on the validation set. Then maximum utility is made of the inform
available by rebuilding the positive and negative models from the full training data.

As an additional benefit, threshold selection automatically compensates for the fact tha
the positive and negative models are based on different amounts of training data. In g
one expects to achieve better compression with more data.

5.1.5. Results
Elsewhere [10] we have compared this method with results reported for the naive

and Linear Support Vector Machine methods [7]. The compression-based method o
forms naive Bayes on the six largest categories (grain is the only exception) and is wors

152 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

on the four smallest ones. It is almost uniformly inferior to the support vector method,

ad re-
ory
ple,

n-

le
rd is
ethod
eature
of a

he new

en

tween
g one
ach of
onding
rticle
gative

ard

one of

sually

ts;

data

nseen

h text,
tle
do not
money marketbeing the only exception.
Compared to LSVM, compression-based categorization produces particularly b

sults on the categorieswheatandcorn, which are (almost) proper subsets of the categ
grain. Articles in grain summarize the result of harvesting grain products—for exam
by listing the tonnage obtained for each crop—and all use very similar terminology. Co
sequently the model forwheatis very likely to assign a high score toeveryarticle ingrain.

The occurrence of the word “wheat” is the only notable difference between an artic
in grain that belongs towheatand one that does not. The presence of a single wo
unlikely to have a significant effect on overall compression, and this is why the new m
performs poorly on these categories. Support vector machines perform internal f
selection, and can focus on a single word if that is the only discriminating feature
category. In comparison, naive Bayes performs badly on the same categories as t
method, because it too has no mechanism for internal feature selection.

5.1.6. Modifications
Our initial results were obtained quickly, and we found them encouraging. We th

made many attempts to improve them, all of which met with failure.
To force compression models that are more likely to discriminate successfully be

similar categories, we experimented with a more costly approach. Instead of buildin
positive and one negative model, we built one positive and 117 negative models for e
the 118 categories. Each negative model only used articles belonging to the corresp
category that did not occur in the set of positive articles. During classification, an a
was assigned to a category if the positive model compressed it more than all ne
models did. Results were improved slightly for categories likewheatandcorn. However,
the support vector method still performed far better. Moreover, compared to the stand
compression-based method, performance deteriorated on some other categories.

We also experimented with several modifications to the standard procedure, n
which produced any significant improvement over the results reported above:

• not rebuilding the models from the full training data;
• using the same number of stories for building the positive and negative models (u

far more stories are available for the negative one);
• priming the models with fresh Reuters data from outside the training and test se
• priming the models with the full training data (positive and negative articles);
• artificially increasing the counts for the priming data over those for the training

andvice versa;
• using only a quarter of the original training data for validation;
• using a word model of order 0, escaping to a character model of order 2 for u

words.

5.1.7. Discussion
Compared to state-of-the-art machine learning techniques for categorizing Englis

the compression-based method produces inferior results because it is insensitive to sub
differences between articles that belong to a category and those that do not. We

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 153

believe our results are specific to the PPM compression scheme. If the occurrence of a
arti-

thods
re se-

porated

s that
” de-
ms in
zation
t-
he risk

can be
y hand.
which
rs are
is con-
ss.
al and

e-
by

Viterbi-
of the

by
e top
tion

cision
od that
tively, a

ion

n
as not
,

single word is what counts, any compression scheme will likely fail to classify the
cle correctly. Machine learning schemes fare better because they automatically eliminate
irrelevant features.

Compared to word-based approaches, compression-based methods avoidad hocde-
cisions when preparing input text for the actual learning task. Moreover, these me
transcend the restriction to alphabetic text and apply to arbitrary files. However, featu
lection seems to be essential for some text categorization tasks, and this is not incor
in compression methods.

5.2. Segmentation into tokens

Conventional text categorization is just one example of many text mining method
presuppose that the input is somehow divided into lexical tokens. Although “words
limited by non-alphanumeric characters provide a natural tokenization for many ite
ordinary text, this assumption fails in particular cases. For example, generic tokeni
would not allow many date structures (e.g.,30Jul98, which is used throughout the newsle
ters of Section 4) to be parsed. In general, any prior segmentation into tokens runs t
of obscuring information.

A simple special case of this scheme for compression-based entity extraction
used to divide text into words, based on training data that has been segmented b
An excellent testbed for this research is the problem of segmenting Chinese text,
is written without using spaces or other word delimiters. Although Chinese reade
accustomed to inferring the corresponding sequence of words as they read, there
siderable ambiguity in the placement of boundaries which must be resolved in the proce
Interpreting a text as a sequence of words is necessary for many information retriev
storage tasks: for example, full-text search and word-based compression.

Inserting spaces into text can be viewedas a hidden Markov modeling problem. B
tween every pair of characters lies a potential space. Segmentation can be achieved
training a character-based compression model on pre-segmented text, and using a
style algorithm to interpolate spaces in a way that maximizes the overall probability
text.

For non-Chinese readers, we illustrate the success of the space-insertion method
showing its application to English text in Table 1, which is due to Teahan [26]. At th
is the original text, including spaces in the proper places, then the input to the segmenta
procedure, and finally the output of the PPM-based segmentation method.

In this experiment PPM was trained on a sample of English, and its recall and pre
for space insertion were both 99.52%. Corresponding figures for a word-based meth
does not use compression-based techniques [25] were 93.56% and 90.03%, respec
result which is particularly striking becausePPM had been trained on only a small fract
of the amount of text used for the other scheme.

PPM performs well on unknown words: althoughMicronitedoes not occur in the Brow
Corpus, it is correctly segmented in Table 1. There are two errors. First, a space w
inserted intoLoewsCorpbecause the single “word” requires only 54.3 bits to encode

154 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

Table 1

on
is based
ly

novel

terns

l
tions,
ing
l, and

infor-
unning
ity
ll be
lan-

etters
e of an
ld be
ssion
en the
ym
Segmenting words in English text

text the unit of New York-based Loews Corp that makes Kent ciga-
rettes stopped using crocidolite in its Micronite cigarette filters
in 1956.

input theunitofNewYork-basedLoewsCorpthatmakesKentcigarettess
toppedusingcrocidoliteinitsMicronitecigarettefiltersin1956.

output the unit of New York-based LoewsCorp that makes Kent ciga-
rettes stopped using croc idolite in its Micronite cigarette filters
in 1956.

whereasLoews Corprequires 55.0 bits. Second, an extra space was added tocrocidolite
because that reduced the number of bits required from 58.7 to 55.3.

Existing techniques for Chinese text segmentation are either word-based, or rely
hand-crafted segmentation rules. In contrast, the compression-based methodology
on character-level models formed adaptively from training text. Such models do not re
on a dictionary and fall back on general properties of language statistics to process
words. Excellent results have been obtained with the new scheme [27].

5.3. Acronym extraction

Identifying acronyms in documents—which is certainly also about looking for pat
in text—presents a rather different kind of problem. Webster defines an “acronym” as

a word formed from the first (or first few) letters of a series of words, asradar, from
radio detectingand ranging.

Acronyms are often defined by preceding or following their first use with a textua
explanation—as in Webster’s example. Finding all acronyms, along with their defini
in a particular technical document is a problem that has previously been tackled usad
hocheuristics. The information desired—acronyms and their definitions—is relationa
this distinguishes it from the text mining problems discussed above.

It is not immediately obvious how compression can assist in locating relational
mation such as this. Language statistics certainly differ between acronyms and r
text, because the former have a higher densityof capital letters and a far higher dens
of non-initial capital letters. However, it seems unlikely that acronym definitions wi
recognized reliably on this basis: they will not be readily distinguished from ordinary
guage by their letter statistics.

We have experimented with coding potential acronyms with respect to the initial l
of neighboring words, and using the compression achieved to signal the occurrenc
acronym and its definition [34]. Our criterion is whether a candidate acronym cou
coded more efficiently using a special model than it is using a regular text compre
scheme. A phrase is declared to be an acronym definition if the discrepancy betwe
number of bits required to code it using a general-purpose compressor and the acron
model exceeds a certain threshold.

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 155

We first pre-filter the data by identifying acronym candidates: for initial work we de-
each
nge

nym in
parate
econd
tifies
gives

0 PPM

al en-
For
xt

ore
tained
t that,
an do

nced as
tural”

ical re-
nt

ext
onyms
eed to
me

defini-

ifica-
all
e holis-
rence or
cided to consider words in upper case only. Then we determined two windows for
candidate, one containing 16 preceding words and the other 16 following words. This ra
covered all acronym definitions in our test data.

5.3.1. Compressing the acronyms
Candidate acronyms are coded using a group of models that express the acro

terms of the leading letters of the words on either side. This group comprises four se
models. The first tells whether the acronym precedes or follows its definition. The s
gives the distance from the acronym to the first word of the definition. The third iden
a sequence of words in the text by a set of offsets from the previous word. The fourth
the number of letters to be taken from each word. Each of these models is an order-
model with a standard escape mechanism.

After compressing the acronym candidates with respect to their context, all leg
codings for each acronym are compared and the one that compresses best is selected.
comparison, we compress the acronym using the text model, taking the preceding conte
into account. The candidate is declared to be an acronym if

bits acronym model

bits text model
� t

for some predetermined thresholdt . Although subtracting the number of bits seems m
easily justified than using the ratio between them, in fact far better results were ob
using the ratio method. We believe that the reason for this is linked to the curious fac
using a standard text model, longer acronyms tend to compress into fewer bits th
shorter ones. While short acronyms are often spelt out, long ones tend to be pronou
words. This affects the choice of letters: longer acronyms more closely resemble “na
words.

5.3.2. Experimental results
To test these ideas, we conducted an experiment on a sizable sample of techn

ports, and calculated recall and precision foracronym identification. The operating poi
on the recall/precision curve can be adjusted by varyingt . While direct comparison with
other acronym-extraction methods is not possible because of the use of different t
corpora, our scheme performs well and provides a viable basis for extracting acr
and their definitions from plain text. Compared to other methods, it reduces the n
come up with heuristics for deciding when to accept a candidate acronym—although so
prior choices are made when deciding how to code acronyms with respect to their
tions.

5.4. Structure recognition

We have shown that while compression is a useful tool for many token class
tion tasks, it is less impressive for documentcategorization. As a discriminant, over
compression tends to weaken as the size of individual items grows, because a singl
tic measure may become less appropriate. Some decisions depend on the occur

156 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

non-occurrence of a few special words, which makes feature selection essential. Even in
con-
enjoy
local

es de-
tured.
ername,
s. After
tion 4,
or in-

from
g train-
lf.
g

s
is

e algo-
n at

d been
emain
d by the
clusive
rong

sidered

t from
his
token discrimination, different kinds of token may be distinguishable only by the
text in which they occur—for example, author’s names and editor’s names no doubt
identical statistical properties, but are distinguished in bibliographic references by
context.

The size of individual tokens can often be reduced by extending the techniqu
scribed above to work hierarchically. This allows more subtle interactions to be cap
Names are decomposable into forenames, initial, surname; email addresses into us
domain, and top-level domain; and fax numbers contain embedded phone number
analyzing the errors made during the generic entity extraction experiments of Sec
we refined the markup of the training documents to use these decompositions. F
stance:

Name <n><f>Ian</f> <i>H</i>. <s>Witten</s></n>

Email <e><u>ihw</u>@<d>cs.waikato.ac</d>.<t>nz</t></e>

Fax <f><p>+64-7-856-2889</p> fax</f>

We use the term “soft parsing” to denote inference of what is effectively a grammar
example strings, using exactly the same compression methodology as before. Durin
ing, models are built for each component of a structured item, as well as the item itse
For example, theforenamemodel is trained on all forenames that appear in the trainin
data, while thenamemodel is trained on patterns likeforenamefollowed by space fol-
lowed bymiddle initial followed by period and space followed bysurname, where each
of the lower-level items—forename, middle initial andsurname—are treated by PPM a
a single “character” that identifies the kind of token that occurs. When the test file
processed to locate tokens in context, these new tags are inserted into it too. Th
rithm described in Section 4 accommodates nested tokens without any modificatio
all.

Initial results are mixed. Some errors are corrected (e.g., some names that ha
confused with other token types are now correctly marked), but other problems r
(e.g., the fax/phone number mix-up) and a few new ones emerge. Some are cause
pruning strategies used; others are due to insufficient training data. Despite incon
initial results, we believe that soft parsing will prove invaluable in situations with st
hierarchical context (e.g., references and tables).

It is possible that the technique can be extended to the other kinds of tasks con
above. For example, we could mark up an acronym, with its definition. Webster’sradar
example above might look like

Acronym... of a series of words, as <a>radar, from

<d>radio detecting and ranging</d>.

To capture the essential feature of acronyms—that the word being defined is buil
characters in the definition—the search algorithm needs to be extended to consider t
possibility.

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 157

In text categorization, important features could be highlighted. The word “wheat”,

kup
to

nt in
nifying

nt kinds
tly-
hich

cations
nge of

gh
ntages
ark
pres-

rnal

iques:
goriza-
ever,

o incor-

tch it

nction
Ma-

t

fer-
which distinguishes articles onwheatfrom other articles in thegrain category, could be
marked in the training data—or by an automatic feature selection process—and the mar
inferred in the test data. Such techniques may allow compression-based generalization
tackle problems that require feature selection.

6. Conclusions

Text mining is a burgeoning new area that is likely to become increasingly importa
future. This paper has argued, through examples, that compression forms a sound u
principle that allows many text mining problems to be tacked adaptively.

Word-based and character-based compression methods can be applied to differe
of text mining tasks. Phrase hierarchiescan be extracted from documents using recen
developed algorithms for inferring hierarchies of repetitions in sequences, all of w
have been proposed for text compression. Although we have not focused on appli
of phrase hierarchies in this paper, they are beginning to be applied in a diverse ra
areas, including browsing in digital libraries.

The extraction of different kinds of entities from text is commonly approached throu
the use of hand-tailored heuristics. However, adaptive methods offer significant adva
in construction, debugging, and maintenance. While they suffer from the necessity to m
up large numbers of training documents, this can be alleviated by priming the com
sion models with appropriate data—lists of names, addresses, etc.—gathered from exte
sources.

Other kinds of text-mining problems also succumb to compression-based techn
examples are word segmentation and acronym extraction. Some, notably text cate
tion, seem less well-suited to the holistic approach that compression offers. How
hierarchical decomposition can be used to strengthen context, and perhaps even t
porate the results of automatic feature selection.

Adaptive text mining using compression-based techniques is in its infancy. Wa
grow.

Acknowledgements

Much of the research reported in this paper here has been undertaken in conju
with others. In particular, Zane Bray, John Cleary, Eibe Frank, Stuart Inglis, Malika
houi, Gordon Paynter, Craig Nevill-Manning,Bill Teahan, Ying Ying Wen and Stuar
Yeates have all contributed greatly to the work described here.

References

[1] T.C. Bell, J.G. Cleary, I.H. Witten, Text Compression, Prentice Hall, Englewood Cliffs, NJ, 1990.
[2] J. Bentley, D. McIlroy, Data compression using longcommon strings, in: Proc. Data Compression Con

ence, IEEE Press, Los Alamitos, CA, 1999, pp. 287–295.

158 I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159

[3] R. Brandow, K. Mitze, L.F. Rau, Automatic condensation of electronic publications by sentence selection,

99.
Trans.

for
ge

rn-

n,

sion
er

K,

s, Brown

t

on

nce,

and

r soft-

(3)

ithm,

J.A.
79–

large

s in

c.

menta-

E

n, in:
Information Processing and Management 31 (5) (1995) 675–685.
[4] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.
[5] N.A. Chinchor, Overview of MUC-7/MET-2, in: Proc. Message Understanding Conference MUC-7, 19
[6] J.G. Cleary, I.H. Witten, Data compression using adaptive coding and partial string matching, IEEE

Comm. 32 (4) (1984) 396–402.
[7] S.T. Dumais, J. Platt, D. Heckerman, M. Sahami, Inductive learning algorithms and representations

text categorization, in: Proceedings of the 7th International Conference on Information and Knowled
Management, 1998.

[8] U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuousvalued attributes for classification lea
ing, in: Proc. Internat. Joint Conference on Artifical Intelligence, 1993, pp. 1022–1027.

[9] E. Frank, G.W. Paynter, I.H. Witten, C. Gutwin, C. Nevill-Manning, Domain-specific keyphrase extractio
in: Proc. Internat. Joint Conference on Artificial Intelligence, Stockholm, Sweden, 1999, pp. 668–673.

[10] E. Frank, C. Chiu, I.H. Witten, Text categorization using compression models, in: Proc. Data Compres
Conference (Poster paper), IEEE Press, Los Alamitos, CA, 2000. Full version available as Working Pap
00/2, Department of Computer Science, University of Waikato.

[11] C. Grover, C. Matheson, A. Mikheev, TTT: Text Tokenization Tool, 1999,http://www.ltg.ed.ac.uk/.
[12] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, Cambridge, U

1997.
[13] P.G. Howard, The design and analysis of efficient lossless data compression systems, PhD Thesi

University, 1993.
[14] F.C. Johnson, C.D. Paice, W. Black, A. Neal, The application of linguistic processing to automatic abstrac

generation, J. Document and Text Management 1 (1993) 215–241.
[15] J.M. Kupiec, J. Pedersen, F. Chen, A trainable document summarizer, in: Proc. ACM SIGIR Conference

Research and Development in Information Retrieval, ACM Press, 1995, pp. 68–73.
[16] N.J. Larsson, A. Moffat, Offline dictionary-based compression, in: Proc. Data Compression Confere

IEEE Press, Los Alamitos, CA, 1999, pp. 296–305.
[17] J.R. Larus, Whole program paths, in: Proc. SIGPLAN 99 Conf. on Programming Languages Design

Implementation, 1999.
[18] J. Lovins, Development of a stemming algorithm, Mech. Transl. Comput. Linguistics 11 (1968) 22–31.
[19] A.R. Martin, Intelligent speech synthesis using the sequitur algorithm and graphical training: serve

ware, M.S. Thesis, Engineering Science, University of Toronto, 1999.
[20] B.A. Nardi, J.R. Miller, D.J. Wright, Collaborative, programmable intelligent agents, Comm. ACM 41

(1998) 96–104.
[21] C.G. Nevill-Manning, I.H. Witten, Identifying hierarchical structure in sequences: a linear-time algor

J. Artificial Intelligence Res. 7 (1997) 67–82.
[22] C.G. Nevill-Manning, I.H. Witten, Phrase hierarchy inference and compression in bounded space, in:

Storer, M. Cohn (Eds.), Proc. Data Compression Conference, IEEE Press, Los Alamitos, CA, 1998, pp. 1
188.

[23] C.G. Nevill-Manning, I.H. Witten, G.W. Paynter, Lexically-generated subject hierarchies for browsing
collections, Internat. J. Digital Libraries 2 (2–3) (1999) 111–123.

[24] C.G. Nevill-Manning, I.H. Witten, Online and offline heuristics for inferring hierarchies of repetition
sequences, Proc. IEEE 88 (11) (2000) 1745–1755.

[25] J.M. Ponte, W.B. Croft, Useg: a retargetable word segmentation procedure for information retrieval, in: Pro
on Document Analysis and Information Retrieval, Las Vegas, Nevada, 1996.

[26] W.J. Teahan, Modelling English text, PhD Thesis, University of Waikato, NZ, 1997.
[27] W.J. Teahan, Y. Wen, R. McNab, I.H. Witten, A compression-based algorithm for Chinese word seg

tion, Comput. Linguistics 26 (3) (2000) 375–393.
[28] D. Tkach, Text mining technology: Turning information into knowledge, IBM White paper, 1997.
[29] P. Turney, Learning algorithms for keyphrase extraction, Information Retrieval 2 (4) (2000) 303–336.
[30] A.J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEE

Trans. Inform. Theory (1967) 260–269.
[31] I.H. Witten, Z. Bray, M. Mahoui, W.J. Teahan, Text mining: a new frontier for lossless compressio

Proc. Data Compression Conference, IEEE Press, Los Alamitos, CA, 1999, pp. 198–207.

http://www.ltg.ed.ac.uk/

I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137–159 159

[32] I.H. Witten, A. Moffat, T.C. Bell, Managing Gigabytes: Compressing and Indexing Documents and Images,

66

Com-
ng

e-

e-
second ed., Morgan Kaufmann, San Francisco, CA, 1999.
[33] J.G. Wolff, An algorithm for the segmentation of an artificial language analogue, British J. Psychol.

(1975) 79–90.
[34] S. Yeates, D. Bainbridge, I.H. Witten, Using compression to identify acronyms in text, in: Proc. Data

pression Conference (Poster paper), IEEE Press, Los Alamitos, CA, 2000. Full version available as Worki
Paper 00/1, Department of ComputerScience, University of Waikato.

[35] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform. Th
ory IT-23 (3) (1977) 337–343.

[36] J. Ziv, A. Lempel, Compression ofindividual sequences via variable-rate coding, IEEE Trans. Inform. Th
ory IT-24 (5) (1978) 530–536.

	Adaptive text mining: inferring structure from sequences
	Introduction
	Generating phrase hierarchies
	Sequitur: an online technique
	Most frequent first
	Longest first
	Discussion

	Extracting keyphrases
	Background
	Keyphrase extraction
	Experimental results
	Exploiting domain-specific information
	Discussion

	Generic entity extraction
	An example
	Discriminating isolated tokens
	Distinguishing tokens in context
	Locating tokens in context
	Discussion

	Other text mining tasks
	Text categorization
	The benchmark data
	Pairwise discrimination
	Building positive and negative models
	Setting the threshold
	Results
	Modifications
	Discussion

	Segmentation into tokens
	Acronym extraction
	Compressing the acronyms
	Experimental results

	Structure recognition

	Conclusions
	Acknowledgements
	References

