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Abstract

Text mining is about inferring structure from sequences representing natural language text, and
may be defined as the process of analyzing text to extract information that is useful for particular
purposes. Although hand-crafted heuristics are a common practical approach for extracting informa-
tion from text, a general, and generalizable, approach requires adaptive techniques. This paper studies
the way in which the adaptive techniques used in text compression can be applied to text mining. It
develops several examples: extraction of hierarchical phrase structures from text, identification of
keyphrases in documents, locating proper hamescuantities of interesiia piece of text, text
categorization, word segmentation, acronym extraction, and structure recognition. We conclude that
compression forms a sound unifying principle that allows many text mining problems to be tacked
adaptively.
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1. Introduction

Text mining is about inferring structure from sequences representing natural language
text, and may be defined as the process of analyzing text to extract information that is
useful for particular purposes—often calleshétadata”. Compared with the kind of data
stored in databases, text is unstructured, amorphous, and contains information at many
different levels. Nevertheless, the motivation for trying to extract information from it is
compelling—even if success is only partial. §péte the fact that the problems are diffi-
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cult to define clearly, interest in text mirgris burgeoning because it is perceived to have
enormous potential practical utility.

Text compression is about identifying patterns that can be exploited to provide a more
compact representation of the text. A relatively mature technology, it offers key insights
for text mining. Research in compressiorsteways taken the pragmatic view that files
need to be processed whatever they may contain, rather than the normative approach of
classical language analysis which generally assumes idealized input. Modern compression
methods avoid making prior assumptions about the input by using adaptive technigques.
In practice text—particularly text gathered from the Web, the principal source of material
used today—is messy, and many useful clues come from the messiness. Adaptation is
exactly what is required to deal with the vagaries of text universally encountered in the real
world.

This paper studies the way in which the adaptive techniques used in text compression
can be applied to text mining.

One useful kind of pattern concerns the repetition of words and phrases. So-called “dic-
tionary” methods of compression capitalize ongtfons: they represent structure in terms
of a set of substrings of the text, and achieve compression by replacing fragments of text
by an index into a dictionarnA recent innovation is “hierahical” dictionary methods,
which extend the dictionary to a non-trivial hierarchical structure which is inferred from
the input sequence [21]. As well as fulfillinbeir original purpose of forming an excel-
lent basis for compression, such hierarchies expose interesting structure in the text that is
very useful for supporting information-browsing interfaces, for example [23]. Section 2
describes schemes for generating phrase hierarchies that operate in time linear in the size
of the input, and hence are practical on large volumes of text.

Keyphrases are an important kind of metadata for many documents. They are often used
for topic search, or to summarize or cluster doents. It is highly desirable to automate
the keyphrase extraction process, for only a small minority of documents have author-
assigned keyphrases, and manual assignment of keyphrases to existing documents is very
laborious. Appropriate keyphrases can be selected from the set of repeated phrases men-
tioned above. In order to do so we temporarily depart from our theme of text compression
and, in Section 3, look at simple machine leamselection criteria and their success in
keyphrase assignment.

Returning to applications of text compression, “character-based” compression methods
offer an alternative to dictionary-based compression and open the door to new adaptive
techniques of text mining. Character-based language models provide a promising way to
recognize lexical tokens. Business and professional documents are packed with loosely
structured information: phone and fax numbers, street addresses, email addresses and
signatures, tables of contents, lists of references, tables, figures, captions, meeting an-
nouncements, URLSs. In addition, there amuntless domain-specific structures—ISBN
numbers, stock symbols, chemical structuesgsl mathematical equations, to name a few.
Tokens can be compressed using models derived from different training data, and classified
according to which model supports the mosbemical representation. We will look at
this application in Section 4.
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There are other areas in which compression has been used for text mining: text catego-
rization, segmentation into tokens, and acronym extraction. We review these in Section 5,
concluding with more speculative material on structure recognition.

2. Generating phrase hierarchies

Dictionary-based compression methods cdigiézon repetitions. In simplest form, they
replace subsequent occurrences of a substring with references to the firstinstance. Standard
compression methods are non-hierarchical, but hierarchical dictionary-based schemes have
recently emerged that form a grammar for at tex replacing each repeated string with a
production rule.

Such schemes usually operate online, making a replacement as soon as repetition is de-
tected. “Online” algorithms process the input stream in a single pass, and begin to emit
compressed output long before they have seen all the input. Historically, virtually all com-
pression algorithms have been online, besgamain memory has until recently been the
principal limiting factor on the large-scale application of string processing algorithms for
compression. However, offline operation permits greater freedom in choosing the order of
replacement. Offline algorithms can examihe tnput in a more considered fashion, and
this raises the question of whether to séekuentrepetitions otongrepetitions—or some
combination of frequency and length.

This section describes three algorithms for inferring hierarchies of repetitions in se-
guences that have been developed recentlytdet compression. Surprisingly, they can
all be implemented in such a way as to operate in time that is linear in the length of the
input sequence. This is a severe restriction: apart from standard compression algorithms
that produce non-hierarchical structure (e.g., [35]) and tail-recursive hierarchical structure
(e.g., [36]), no linear-time algorithms for detecting hierarchical repetition in sequences
were known until recently.

2.1. SEQUITUR: an online technique

Online operation severely restricts the oppaities for detecting repetitions, for there
is no alternative to proceeding in a greedy-ief-right manner. It may be possible to post-
pone decision-making by retaining a buffer refcent history and usg this to improve
the quality of the rules generated, but at some point the input must be processed greedily
and a commitment made to a particular decomposition—that is inherent in the nature of
(single-pass) online processing.

SEQUITUR s an algorithm that creates a hierarchical dictionary for a given string in a
greedy left-to-right fashion [21]. It builds a hierarchy of phrases by forming a new rule
out of existing pairs of symbols, including non-terminal symbols. Rules that become non-
productive—in that they do not yield a net space saving—can be deleted, and their head
replaced by the symbols that comprise the rgand side of the deleted rules. This al-
lows rules that concatenate more than two symbols to be formed. For example, the string
abcdbcabcdbgives rise to the grammar

S— AA
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A — aBdB
B — bc.

Surprisingly, £QUITUR operates in time that is linear in the size of the input [22]. The
proof sketched here also contains an explanation of how the algorithm wa&s. 8JrR
operates by reading a new symbol and processing it by appending it to the top-level string
and then examining the last two symbols of that string. Zero or more of the three transfor-
mations described below are applied, until napglies anywhere in the grammar. Finally,
the cycle is repeated by reading in a new symbol.

At any given point in time, the algorithmals reached a particular point in the input
string, and has generated a certain set of rulesr lbet one less than the number of rules,
ands the sum of the number of symbols on thghi-hand side of all these rules. Recall
that the top-level string, which represents the input read so far, forms one of the rules in
the grammar; it begins with a null right-hand side. Initiallyands are zero.

Here are the three transformations. Only the first two can occur when a new symbol is
first processed; the third can only fire if one or more of the others has already been applied
in this cycle.

1. The digram comprising the last two symbols matches an existing rule in the grammar.
Substitute the head of that rule for the digrandecreases by oneremains the same.

2. The digram comprising the last two symbols occurs elsewhere on the right-hand side
of a rule. Create a new rule for it and substitute the head for both its occurrences.
r increases by one;remains the same (it increases by two on account of the new rule,
and decreases by two on account of the two substitutions).

3. Arule exists whose head occurs only once in the right-hand sides of all rules. Eliminate
this rule, substitutingts body for the head- decreases by one;decreases by one too
(because the single occurrence of the rule’s head disappears).

To show that this algorithm operates in linear time, we demonstrate that the total number
of rules applied cannot exceed,2vheren is the number of input symbols. Consider the
quantityg = s — r/2. Initially O, it can never be negative becaus€ s. It increases by 1
for each input symbol processed, and ie&sy to see that it must decrease by at legat 1
for each rule applied. Hence the number of rules applied is at most twice the number of
input symbols.

2.2. Most frequent first

SEQUITUR processes the symbols in the order in which they appear. The first-occurring
repetition is replaced by a rule, then the aad-occurring repetition, and so on. If online
operation is not required, this policy can be relaxed. This raises the question of whether
there exist heuristics for selecting substrifigsreplacement that yield better compression
performance. There are two obvious possibilities: replacing the most frequent digram first,
and replacing the longest repetition first.

The idea of forming a rule for the most frequently-occurring digram, substituting the
head of the rule for that digram in the input string, and continuing until some terminating
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condition is met, was proposed a quarter cenagy by Wolff [33] and has been reinvented
many times since then. The most common repedigram is replaced first, and the process
continues until no digram appears morertlgace. This algorithm operates offline because
it must scan the entirstring before makipthe first replacement.

Wolff’s algorithm is inefficient: it takes ©:%) time because it makes multiple passes
over the string, recalculating digram frequéscfrom scratch every time a new rule is
created. However, Larsson and Moffat [16] recently devised a clever algorithm, dubbed
RE-PAIR, whose time is linear in the length of the input string, which creates just this
structure of rules: a hierarchy generateddgiying preference to digrams on the basis of
their frequency. They reduce execution time to linear by incrementally updating digram
counts as substitutions are made, and using a priority queue to keep track of the most
common digrams.

For an example of the frequent-first heuristic in operation, consider the stringibaa
baa. The most frequent digram is:, which occurs four times. Creating a new rule for this
yields the grammar

S — AAaAaAa

A — ba.
ReplacingAagives

S— ABBB

A — ba

B — Aa,

a grammar with eleven symbols (including three end of rule symbols). This happens to be
the same as the length of the original string (without terminator).

2.3. Longest first

A second heuristic for choosing the order of replacements is to process the longest
repetition first. In the same stringubaabaabaa the longest repetition igbaa, which
appears twice. Creating a new rule gives

S — bAbaA

A — abaa.
Replacingpa yields

S—bABA

A — aBa

B — ba,

resulting in a grammar with a total of twelve symbols.

Bentley and Mcllroy [2] explored the longeBist heuristic for very long repetitions,
and removed them using an LZ77 pointer-style approach before invgkiptp compress
shorter repetitions. This is not a linear-time solution.
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Suffix trees [12] provide an efficient mecham for identifying longest repetitions. In
a suffix tree, the longest repetition corresponds to the deepest internal node, measured in
symbols from the root. The deepest non-terminal can be found by traversing the tree, which
takes time linear in the length of the inpagcause there is a one-to-one correspondence
between leaf nodes and symbols in the string.

We are left with two problems: how to find all longest repetitions, and how to update
the tree after creating a rule. Farach-Colton and Nevill-Manning (private communication)
have shown that it is possible to build three, and update it after each replacement, in
time which is linear overall. The tree can be updated in linear amortized time by making a
preliminary pass through it and sorting the depths of the internal nodes. Sorting can be done
in linear time using a radix sort, because no repetition will be longer #h@nsymbols.

The algorithm relies on the fact that the deepest node is modified at each point.

2.4. Discussion

Itis interesting to compare the performance of the three algorithms we have described:
SEQUITUR, most frequent-first, and longest-first [24]. It is not hard to devise short strings
on which any of the three outperforms the other two. In practice, however, longest-first
is significantly inferior to the other techniques; indeed, simple artificial sequences can
be found on which the number of rules it produces grows linearly with sequence length
whereas the number of rules produced by frequent-first grows only logarithmically. Exper-
iments on natural language text indicate that in terms of the total number of symbols in the
resulting grammar, which is a crude measure of compression, frequent-first outperforms
SEQUITUR, with longest-first lagging well behind.

There are many applications of hierarchistilicture inference techniques in domains
related more closely to text mining than compression [24]. For example, hierarchical
phrase structures suggest a new way of agginong the problem of familiarizing oneself
with the contents of a large collection of electronic text. Nevill-Manning et al. [23] pre-
sented the hierarchical structure inferred IBQBITUR interactively to the user. Users can
select any word from the lexicon of the coltem, see which phrases it appears in, select
one of them and see the larger phrases in which it appears, and so on. Larus [17] gives an
application in program optimization, where the first step is to identify frequently-executed
sequences of instructions—that is, paths that will yield the greatest improvement if opti-
mized. Martin [19] has used these techniguesdgment the input for speech synthesis, so
that phonemes can be attached to rules at the appropriate levels.

3. Extracting keyphrases

Automatic keyphrase extraction is a promgarea for text mining because keyphrases
are an important means for document summarization, clustering, and topic search.
Only a minority of documents have author-assigned keyphrases, and manually assign-
ing keyphrases to existing documents is very laborious. Therefore, it is highly desirable to
automate the keyphrase extraction process.



I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137-159 143

The phrase extraction techniques described above provide an excellent basis for select-
ing candidate keyphrases. In order to go further and decide which phrases are keyphrases,
we need to step outside the area of compression and use techniques from machine learning.
We have combined phrase extraction with agerprocedure based on the “naive Bayes”
learning scheme, and shown it to perform comparably to the state-of-the-art in keyphrase
extraction [9]. Performance can be boosted even further by automatically tailoring the ex-
traction process to the particular document collection at hand, and experiments with a large
collection of technical reports in computer science have shown that the quality of the ex-
tracted keyphrases improves significantly if domain-specific information is exploited.

3.1. Background

Several solutions have been proposed for generating or extracting summary information
from texts [3,14,15]. In the specific domain of keyphrases, there are two fundamentally
different approaches: keyphragssignmenand keyphrasextraction Both use machine
learning methods, and require for training purposes a set of documents with keyphrases
already identified. In keyphrase assignment, there is a predefined set from which all
keyphrases are chosen—a controlled vocalguldren the training data provides, for each
keyphrase, a set of documents that are associated with it. For each keyphrase, a classifier is
created from all training documents using tirees associated with it as positive examples
and the remainder as negative examplese document is processed by each classifier,
and is assigned the keyphrases associated with those that classify it positively [7]. Here, the
only keyphrases that can be assigned are ones that are in the controlled vocabulary. In con-
trast, keyphrase extraction, which forms the basis of the method described here, employs
linguistic and information retrieval techniques to extract phrases from a new document that
are likely to characterize it. The training set is used to tune the parameters of the extraction
algorithm, and any phrase in the new document is a potential keyphrase.

Turney [29] describes a system for keyphrase extraction, GenEx, that is based on a set
of parametrized heuristic rules which are fine-tuned using a genetic algorithm. The genetic
algorithm optimizes the number of correctly identified keyphrases in the training docu-
ments by adjusting the rules’ parameters. Turney compares GenEx to the straightforward
application of a standard machine learniteghnique—bagged decision trees [4]—and
concludes that GenEx performs better. He alsows that it generalizes well across collec-
tions: trained on a collection of journal articles it successfully extracts keyphrases from a
collection of web pages on a different topithis is an important feature because training
GenEx on a new collection is computationally very expensive.

3.2. Keyphrase extraction

Keyphrase extraction is a classification task. Each phrase in a document is either a
keyphrase or not, and the problem is to correctly classify phrases into one of these two cat-
egories. Machine learning provides off-the-shelf tools for this problem. In the terminology
of machine learning, the phrases in a document are “examples” and the learning problem
is to find a mapping from the examples to the classes “keyphrase” and “not-keyphrase”.
Learning techniques can automatically gexte this mapping if they are provided with a
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set of training examples—that is, examples that have class labels assigned to them. In the
context of keyphrase extraction this is simply a set of phrases which have been identified
as either being keyphrases or not. Once the learning scheme has generated the mapping
given the training data, it can be applied to unlabeled data, thereby extracting keyphrases
from new documents.

Not all phrases in a document are equally likely to be keyphrasesori. In order
to facilitate the learning process, most phrases can be eliminated from the examples that
are presented to the learning scheme. We have experimented with many ways of doing
this, most involving one of the hierarchical phrase extraction algorithms described above.
Following this process, all words are case-folded, and stemmed using the iterated Lovins
method. This involves using the classic Lovins stemmer [18] to discard any suffix, and
repeating the process on the stem that remains, iterating until there is no further change.
The final step in preparing the phrases for the learning scheme is to remove all stemmed
phrases that occur only once in the document.

Once candidate phrases have been generated from the text, it is necessary to derive
selected properties from them. In machine learning these properties are called the “attribut-
es” of an example. Several potential attributes immediately spring to mind: the number of
words in a phrase, the number of characters, the position of the phrase in the document,
etc. However, in our experiments, only two attributes turned out to be useful in discrimi-
nating between keyphrases and non-keyphrases. The first is the distance into the document
of the phrase’s first appearance. The second, and more influential, is the “term frequency
times inverse document frequency”, or XHDF, score of a phrase [32]. This is a stan-
dard measure used in information retrieval which favors terms that occur frequently in the
document (“term frequency”) but disfavoosies that occur in many different documents
(“inverse document frequency”) on the grounds that common terms are poor discrimina-
tors.

Both these attributes are real numbers. We use the “naive Bayes” learning method be-
cause it is simple, quick, and effective: it conditions class probabilities on each attribute,
and assumes that the attributes are statistically independent. In order to make it possi-
ble to compute conditional probabilities, we discretize the attributes prior to applying the
learning scheme, quantizing the numericihtttes into ranges so that each value of the re-
sulting new attribute represents a range of values of the original numeric attribute. Fayyad
and Irani’s [8] discretization scheme, which is based on the Minimum Description Length
principle, is suitable for this purpose.

The naive Bayes learning scheme is a simple application of Bayes’ formula. It assumes
that the attributes—in this case ®DF and distance—are independent given the class.
Making this assumption, the probabilityaha phrase is a keyphrase given that it has
discretized TFx IDF value T and discretized distancP is easily computed from the
probability that a keyphrase has KHDF scoreT, the probability that a keyphrase has
distanceD, thea priori probability that a phrase is a keyphrase, and a suitable normaliza-
tion factor. All these probabilities can betiesated by counting the number of times the
corresponding event occurs in the training data.

This procedure is used to generate a Bayes model from a set of training documents
for which keyphrases are known (for examptbecause the author provided them). The
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resulting model can then be applied in a straightforward way to a new document from
which keyphrases are to be extracted.

First, TFx IDF scores and distance values adculated for all phrases in the new
document using the procedure described above, using the discretization obtained from the
training documents. (Both attributes, KHDF and distance, can be computed without
knowing whether a phrase is a keyphrase or not.) The naive Bayes model is then applied to
each phrase, giving the estimated probabilityio$ phrase being a keyphrase. The result
is a list of phrases ranked according to their associated probabilities. Finallyhtgkest
ranked phrases are output, wherie a user-determined parameter.

3.3. Experimental results

We have evaluated this keyphrase extraction method on several different document col-
lections with author-assigned keyphrases. Etiterion for success is the extent to which
the algorithm produces the same stemmed phrases as authors do. This method of evaluation
is the same as used by Turney [29], and on comparing our results with GenEx we conclude
that both methods perform at about the same level.

An interesting question is how keyphrase extraction performance scales with the amount
of training data available. There are two ways in which the quantity of available documents
can influence performance on fresh data. Firsiining documents are used in computing
the discretization of the attributes BFIDF and distance, and the corresponding para-
meters for the naive Bayes model. It is essential that these documents have keyphrases
assigned to them because the learning metiextls labeled examples. Second, training
documents are used to calculate the doentrfrequency of each phrase, which in turn
is used to derive its Tk IDF score. In this case, unlabeled documents are appropriate
because the phrase labels are not used.

To investigate these effects we perforneegberiments with a large collection of com-
puter science technical reports (CSTR) from the New Zealand Digital Library. The results
show that keyphrase extraction performance is close to optimum if about 50 training docu-
ments are used for both generating the classifier and computing the global frequencies. In
other words, 50 labeled documents are sufficient to push performance to its limit. However,
we will see in the next subsection that if domain-specific information is exploited in the
learning and extracting process, much langgdumes of labeled training documents prove
beneficial.

3.4. Exploiting domain-specific information

A simple modification of the above procedure enables it to exploit collection-specific
knowledge about the likelihood of a particular phrase being a keyphrase. To do this, just
keep track of the number of times a candidate phrase occurs as a keyphrase in the training
documents and use this information in the form of an additional, third, attribute in the
learning and extraction process.

The new attribute only makes sense if the documents for which keyphrases are to be
extracted are from the same domain as the training documents. Otherwise, biasing the
extraction algorithm towards phrases that have occurred as author-assigned keyphrases
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during training cannot possibly have any beneficial effect. In order to make use of the
information provided by the new attribute, it is therefore necessary to re-train the extraction
algorithm if keyphrases are to be extracted from documents on a different topic. Training
time becomes a critical factor.

We have empirically verified that exploiting domain-specific information increases the
number of correctly extracted keyphrases by performing experiments with the CSTR col-
lection mentioned above [9]. In order to isolate the effect of changing the number of
documents for computing the keyphrase-frequency attribute, we used a separate set of
documents—the keyphrase-frequency corpus—for counting the number of times a phrase
occurs as a keyphrase. We found that the use of the keyphrase-frequency attribute improved
keyphrase extraction markedly when the size of the keyphrase-frequency corpus increased
from zero (i.e., no keyphrase-frequency attribute) to 100, and improved markedly again
when increased from 100 to 1000. The actual set of 130 training documents was held con-
stant; also, the same set of 500 test documents was used throughout this experiment.

3.5. Discussion

We conclude that a simple algorithm for keyphrase extraction, which filters phrases ex-
tracted using a hierarchical decomposition scheme such as those described in Section 2
based on the naive Bayes machine learning method, performs comparably to the state of
the art. Furthermore, performance can be bedby exploiting domai-specific informa-
tion about the likelihood of keyphrases. The new algorithm is particularly well suited for
making use of this information because it dantrained up very quickly in a new domain.
Experiments on a large collection of computer science technical reports confirm that this
modification significantly improvese quality of the keyphrases extracted.

4. Generic entity extraction

We now return to our main theme: using the adaptive techniques developed in text
compression for the purposes of text mining. In this section and the next, we will review ap-
plications of character-based compression methods. Throughout this work, the well-known
PPM text compression scheme is used [1,6], with order 5 (except where otherwise men-
tioned) and escape method D [13]. However, the methods and results are not particularly
sensitive to the compression scheme used, although character-based prediction is assumed.

“Named entities” are defined as proper hames and quantities of interest in a piece of
text, including personal, organization, and location names, as well as dates, times, percent-
ages, and monetary amounts [5]. The standard approach to extracting them from text is
manual: tokenizers and grammars are hand-crafted for the particular data being extracted.
Commercial text mining software includes IBMmstelligent Miner for Tex{28], which
uses specific recognition modules carefully peogmed for the different data types, Ap-
ple’s Data Detectorg20], which uses language grammars, andTexet Tokenization Tool
of [11].

An alternative approach to generic entity extraction is to use compression-based training
instead of explicit programming to detect instances of sublanguages in running text [31].
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4.1. An example

In order to assess the power of language models to discriminate tokens, experiments
were conducted with information items extracted (manually) from twenty issues of a 4-
page, 1500-word, weekly electronic newsletter. Iltems of the kind that readers might wish
to take action on were classified into geneyiods: people’s names; dates and time periods;
locations; sources, journals, and book series; organizations; URLs; email addresses; phone
numbers; fax numbers; and sums of money. These types are subjective: dates and time
periods are lumped together, whereas for some purposes they should be distinguished;
personal and organizational names are separated, whereas for some purposes they should
be amalgamated. The methodgy we describe accommodates all these options: there is
no commitment to any particular ontology.

4.2. Discriminating isolated tokens

The first experiment involved the ability to discriminate between different token types
when the tokens are taken in isolation. Lisfsnames, dates, locations, etc. in twenty
issues of the newsletter were input to the PPM compression scheme separately, to form
ten compression models. Each issue contained about 150 tokens, unevenly distributed over
token types. In addition, a plain text model was formed from the full text of all these issues.
These models were used to identify each of the tokens in a newsletter that did not form part
of the training data, on the basis of which model compresses them the most. Although the
plain text model could in pririple be assigned to a token because it compresses it better
than all the specialized models, in fact this never occurred.

Of the 192 tokens in the test data, 40% appeared in the training data (with the same
label) and the remainder were new. 90.6% of the total were identified correctly and the
remaining 9.4% incorrectly; all errors were on new symbols. Three of the “old” sym-
bols contain line breaks that do not appear in the training data: for example, in the
test dataPar al | el _Conput i ng\ nJour nal is split across two lines as indicated.
However, these items were nevertheless identified correctly. The individual errors are
easily explained; some do not seem like errors at all. For example, the place names
Nor man and Ber kel ey were “mis™-identified as peopls names, time periods like
Spri ng_2000 were mis-identified as sources (because of confusion with newsgroups
like conp. sof t war e. year - 2000), people’s hames were confused with organiza-
tional names, and so on.

4.3. Distinguishing tokens in context

When tokens appear in text, contextual information provides additional cues for disam-
biguating them. Identification must be done conservatively, so that strings of plain text are
not misinterpreted as tokens—since there are many strings of plain text, there are countless
opportunities for error.

Context often helps recognition: e.g., email addresses in this particular newsletter are
always flanked by angle brackets. Conversilgntification may be foiled by misleading
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context: e.g., some names are precedeBdyy. , which reduces the weight of the capital-
ization evidence for the following word becseicapitalization routily follows a period.

The second experiment evaluated the effect of context by assuming that all tokens have
beenocatedin the test issue, and the task igdentifytheir typedn situ. If a stretch of text
is identified as a token of the appropriate type it will compress better using the specialized
model; however, begin- and end-token markers must be coded to indicate this fact. To in-
vestigate this, all tokens in the data werplaeed by a surrogate symbol that was treated by
PPM as a single character (different from aktASCII characters). A different surrogate
was used for each token type. A new model wasggated from the modified training data,
and the test article was compressed by this model to give a baseline entegtsf Then
each token in turn, taken individually, was restored into the test article as plain text and the
result recompressed to give entraplits. This will (likely) be greater thaeg because the
information required to represent the tokereifgalmost certainly) exceeds that required
to represent its type. Supposg is the token’s entropy with respect to model Then the
net space saved by recognizing this token as belonging to moget — (eg + ¢,,) bits.

This quantity was evaluated for each model to determine which one classified the token
best, or whether it was best left as plain téite procedure was repeated for each token.

When context is taken into account the error rate per token actually increases from 9.4%
to 13.5%. However, almost all these “errors” are caused by failure to recognize a token as
different from plain text, and the rate of actual mis-recognitions is only 1%—or just two
mis-recognitions, one of which is the above-mentioBedkel ey being identified as a
name.

To mark up a string as a token requires the insertion of two extra symbols: begin- and
end-token, and it is this additional overhead that causes the above-noted failures to recog-
nize tokens. However, the tradeoff betwestual errors and failures to identify can be
adjusted by using a non-zero threshold when comparing the compression for a particular
token with the compression when its characters are interpreted as plain text. This allows a
small increase in the number of errors to be e for a larger decrease in identification
failures.

4.4, Locating tokens in context

Tokens can be located by considering the input as an interleaved sequence of informa-
tion from different sources. Every token is to be bracketedéyin-tokerandend-token
markers; the problem is to “correct” text by inserting such markers appropriately. The
markers also identify the type of token in question—thus we heggn-name-tokernd-
name-tokeretc., written asn>, </ n>. Whenevebegin-tokeris encountered, the encoder
switches to the compression model appropriate to that token type, initialized to a null prior
context. Wheneveend-tokeris encountered, the encoder reverts to the plain text model
that was in effect before, replacing the token by a single symbol representing that token
type.

The algorithm takes a string of text and works out the optimal sequence of models that
would produce it, along with their placemeittworks Viterbi-style [30], processing the
input characters to build a tree in which egudith from root to leaf represents a string
of characters that is a possible interpretation of the input. The paths are alternative output
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strings, andegin-tokerandend-tokersymbols appear on them. The entropy of a path can
be calculated by starting at the root aratimg each symbol along the path according to
the model that is in force when that symbol is reached. The context is re-initialized to a
unique starting token wheneveegin-tokeris encountered, and the appropriate model is
entered. On encounterirend-tokenit is encoded and the context reverts to what it was
before.

What causes the tree to branch is the insertidmegfin-tokersymbols for every possible
token type, and thend-tokersymbol—which must be for the currently active token type
so that nesting is properly respected. To expand the tree, a list of open leaves is maintained,
each recording the point in the input stringtthas been reached and the entropy value up
to that point. The lowest-entropy leaf is cleosfor expansion at each stage. Unless the tree
and the list of open leaves are pruned, they grow very large very quickly. A beam search
is used, and pruning operations are applied that remove leaves from the list and therefore
prevent the corresponding paths from growing further.

To evaluate the procedure for locating tokens in context, we used the training data from
the same issues of the newsletter as before, and the same single issue for testing. The
errors and mis-recognitions noted above when identifying tokens in context (rates of 1%
and 12.5%, respectively) also occur wheedting tokens. Inevitably there were a few
incorrect positive identifications—2.6% of the number of tokens—where a segment of
plain text was erroneously declared to be a token. In addition, 8% of tokens suffered from
incorrect boundary placement, where the algonitteported a token at approximately the
same place as in the original, but the boundaries were slightly perturbed. Finally, a further
4.7% of tokens suffered discrepancies which were actually errors made inadvertently by
the person who marked up the test data.

4.5. Discussion

We find these initial results encouraging. There are several ways that they could be
improved. The amount of training data—about 3000 tokens, distributed among ten token
types—is rather small. The data certainly contains markup errors, probably at about the
same rate—4.7% of tokens—as the test file. Many of the mistakes were amongst very
similar categories: for example, fax numbers contained embedded phone numbers and were
only distinguished by the occurrence of the wtax several times they were confused with
phone numbers and this counted as an error. Some of the mistakes were perfectly natural—
Nor man as a name instead of a place, for example. In addition, improvements could likely
be made to the pruning algorithm.

5. Other text mining tasks

Character-based compression can be applied in many other ways to text mining tasks.
Here are some examples.
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5.1. Text categorization

A central feature of the approach to generic entity extraction described in the previous
section is the basic assumption that a tokan be identified by conmpssing it according
to different models and seeing which produces the fewest bits of output. We now examine
whether this extends to text categorization—the assignment of natural language texts to
predefined categories based on their contglmeady-classified documents, which define
the categories, are used to build a model that can be used to classify new articles.

Text categorization is a hot topic in machkilearning. Typical approaches extract “fea-
tures”, generally words, from text, and use the feature vectors as input to a machine learning
scheme that learns how to classify documents. This “bag of words” model neglects word
order and contextual effects. It also edssome problems: how to define a “word”, what
to do with numbers and other non-alphabetic strings, and whether to apply stemming. Be-
cause there are so many different features]ection process is applied to determine the
most important words, and the remainder are discarded.

Compression seems to offer a promising rmlétive approach to categorization, with
several potential advantages:

e ityields an overall judgement on the document as a whole, and does not discard infor-
mation by pre-selecting features;

o it avoids the messy problem of defining word boundaries;

e it deals uniformly with morphological variants of words;

e depending on the model (and its order), it can take account of phrasal effects that span
word boundaries;

o it offers a uniform way of dealing with different types of documents—for example,
files in a computer system;

e it minimizes arbitrary decisions that inevity need to be taken to render any learning
scheme practical.

We have performed extensive experiments on the use of PPM for categorization using
a standard dataset [10]. Best results were obtained with order 2; other values degraded
performance in almost all cases—presumalglgduse the amount of training data available

is insufficient to justify more complex models.

5.1.1. The benchmark data

All our results are based on the Reuters-21578 collection of newswire stories, the stan-
dard testbed for the evaluation of text categorization schemes. In total there are 12,902
stories averaging 200 words each, classified Irit8 categories. Many stories are assigned
to multiple categories, and some are not assigned to any category at all. The distribu-
tion among categories is highly skewed: the ten largestrrings corporate acquisitions
money markeigrain, crude oil trade issuesinterest shipping wheat andcorn—contain
75% of stories, an average of around 1000 stories each.
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5.1.2. Pairwise discrimination

Applying a straightforward compression methodology to the problem of text catego-
rization quickly yields encouraging results. In the two-class case, to distinguish documents
of classA from documents of clas8 we form separate modeld, and Mp from the
training documents of each class. Then, giveast tlocument (different from the training
documents), we compress it according to eaxddel and calculate the gain in per-symbol
compression obtained by usidg, instead ofMg. We assign the document to clagsor
B depending on whether this difference is pige or negative, on the principle thaf 4
will compress documents of clagsbetter, and similarly fod g. Encouraging results are
obtained.

5.1.3. Building positive and negative models

To extend to multiply-classified articles, wlecide whether a model belongs to a partic-
ular category independently of whether it belongs to any other category. We build positive
and negative models for each category, the fitst all articles that belong to the category
and the second from those that do not.

5.1.4. Setting the threshold

Deciding whether a new article should in fact be assigned to cat&gonnot presents
a tradeoff between making the decision lidgtancreasing the cance that an article is
correctly identified but also increasing the number of “false positives”; or conservatively,
reducing the number of false positives at the expense of increased “false negatives”. This
tradeoff is captured by the standandormation retrieval notions gbrecision that is the
number of articles that the algorithoorrectly assigns to category expressed as a pro-
portion of the documents that it assigns to this categoryrecall, that is the number of
articles that the algorithm correctly assigns to categoexpressed as a proportion of the
articles that actually have this category. To allow comparison of our results with others, we
maximize the average of retahd precision—a figure that is called the “breakeven point”.

The basic strategy is to calculate the predicted probalfilif¢’| A] of article A having
classificationC, compare it to a predetermined threshold, and declare the article to have
classificationC if it exceeds the threshold. We choose the threshold individually for each
class, to maximize the average of recall anelgision for that class. To do this the training
data is further divided into a new training set and a “validation set”, in the ratio 2:1. The
threshold is chosen to maximize the average etall and precision for the category (the
breakeven point) on the validation set. Then maximum utility is made of the information
available by rebuilding the positive and negative models from the full training data.

As an additional benefit, threshold selectiananatically compesates for the fact that
the positive and negative models are based on different amounts of training data. In general,
one expects to achieve better compression with more data.

5.1.5. Results

Elsewhere [10] we have compared this method with results reported for the naive Bayes
and Linear Support Vector Machine methods [7]. The compression-based method outper-
forms naive Bayes on the six largest categorggaif is the only exception) and is worse
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on the four smallest ones. It is almost uniformly inferior to the support vector method,
money markelbeing the only exception.

Compared to LSVM, compression-based categorization produces particularly bad re-
sults on the categoriegheatandcorn, which are (almost) proper subsets of the category
grain. Articles in grain summarize the result of harvesting grain products—for example,
by listing the tonnage obtained for each crogrd all use very similar terminology. Con-
sequently the model favheatis very likely to assign a high score ¢éweryarticle ingrain.

The occurrence of the word “wheat” is the pmiotable difference between an article
in grain that belongs tavheatand one that does not. The presence of a single word is
unlikely to have a significant effect on overall compression, and this is why the new method
performs poorly on these categories. Support vector machines perform internal feature
selection, and can focus on a single word if that is the only discriminating feature of a
category. In comparison, naive Bayes performs badly on the same categories as the new
method, because it too has no mechariigr internal feature selection.

5.1.6. Modifications

Our initial results were obtained quicklgnd we found them encouraging. We then
made many attempts to improve them, all of which met with failure.

To force compression models that are more likely to discriminate successfully between
similar categories, we experimented with a more costly approach. Instead of building one
positive and one negative model, we built one positive and 117 negative models for each of
the 118 categories. Each negative model only used articles belonging to the corresponding
category that did not occur in the set of positive articles. During classification, an article
was assigned to a category if the positive model compressed it more than all negative
models did. Results were improved slightly for categories likeeatandcorn. However,
the support vector method still performed faatter. Moreover, compared to the standard
compression-based method, performance deteriorated on some other categories.

We also experimented with several modifications to the standard procedure, none of
which produced any significant improvement over the results reported above:

e not rebuilding the models from the full training data;

e using the same number of stories for building the positive and negative models (usually
far more stories are available for the negative one);

e priming the models with fresh Reuters data from outside the training and test sets;

e priming the models with the full training data (positive and negative articles);

o artificially increasing the counts for the priming data over those for the training data
andvice versa

e using only a quarter of the original training data for validation;

e using a word model of order 0, escaping to a character model of order 2 for unseen
words.

5.1.7. Discussion

Compared to state-of-the-art machine learning techniques for categorizing English text,
the compression-based method produces iofegsults because it is insensitive to subtle
differences between articles that belong to a category and those that do not. We do not



I.H. Witten / Journal of Discrete Algorithms 2 (2004) 137-159 153

believe our results are specific to the PPM compression scheme. If the occurrence of a
single word is what counts, any compression scheme will likely fail to classify the arti-
cle correctly. Machine learning schemes faettér because they auatically eliminate
irrelevant features.

Compared to word-based approaches, compression-based methodadcadde-
cisions when preparing input text for the actual learning task. Moreover, these methods
transcend the restriction to alphabetic text and apply to arbitrary files. However, feature se-
lection seems to be essential for some text categorization tasks, and this is not incorporated
in compression methods.

5.2. Segmentation into tokens

Conventional text categorization is just one example of many text mining methods that
presuppose that the input is somehow divided into lexical tokens. Although “words” de-
limited by non-alphanumeric characters provide a natural tokenization for many items in
ordinary text, this assumption fails in particular cases. For example, generic tokenization
would not allow many date structures (e 30,Jul98 which is used throughout the newslet-
ters of Section 4) to be parsed. In general, any prior segmentation into tokens runs the risk
of obscuring information.

A simple special case of this scheme for compression-based entity extraction can be
used to divide text into words, based on training data that has been segmented by hand.
An excellent testbed for this research is the problem of segmenting Chinese text, which
is written without using spaces or other word delimiters. Although Chinese readers are
accustomed to inferring the corresponding sequence of words as they read, there is con-
siderable ambiguity in the placement of bouridawhich must be resolved in the process.
Interpreting a text as a sequence of words is necessary for many information retrieval and
storage tasks: for example, full-text search and word-based compression.

Inserting spaces into text can be viewasla hidden Markov modeling problem. Be-
tween every pair of characters lies a pdtginspace. Segmentation can be achieved by
training a character-based compression model on pre-segmented text, and using a Viterbi-
style algorithm to interpolate spaces in a way that maximizes the overall probability of the
text.

For non-Chinese readers, we illustrate uccess of the space-insertion method by
showing its application to English text in Table 1, which is due to Teahan [26]. At the top
is the original text, including spaces in theper places, then the input to the segmentation
procedure, and finally the output of the PPM-based segmentation method.

In this experiment PPM was trained on a sample of English, and its recall and precision
for space insertion were both 99.52%. Corresponding figures for a word-based method that
does not use compression-based techniques [25] were 93.56% and 90.03%, respectively, a
result which is particularly striking becauB®M had been trained on only a small fraction
of the amount of text used for the other scheme.

PPM performs well on unknown words: althoulglicronite does not occur in the Brown
Corpus, it is correctly segmented in Table 1. There are two errors. First, a space was not
inserted intoLoewsCorpbecause the single “word” reqes only 54.3 bits to encode,
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Table 1
Segmenting words in English text

text the unit of New York-based Loews Corp that makes Kent ciga-
rettes stopped using crocidolite in its Micronite cigarette filters
in 1956.

input theunitofNewYork-basedLoewsCorpthatmakesKentcigarettess
toppedusingcrocidoliteinitsMicronitecigarettefiltersin1956.

output  the unit of New York-based LoewsCorp that makes Kent ciga-
rettes stopped using croc idolite in its Micronite cigarette filters
in 1956.

wheread.oews Corprequires 55.0 bits. Second, an extra space was addaddmlolite
because that reduced the number of bits required from 58.7 to 55.3.

Existing techniques for Chinese text segnagioin are either word-based, or rely on
hand-crafted segmentation rules. In contrast, the compression-based methodology is based
on character-level models formed adapijvieom training text. Such models do not rely
on a dictionary and fall back on general properties of language statistics to process novel
words. Excellent results have been obtained with the new scheme [27].

5.3. Acronym extraction

Identifying acronyms in documents—which is certainly also about looking for patterns
in text—presents a rather different kinfiroblem. Webster defines an “acronym” as

a word formed from the first (or first few) letters of a series of wordgadsr, from
radio detectingand ranging.

Acronyms are often defined by preceding alldwing their first use with a textual
explanation—as in Webster's example. Finding all acronyms, along with their definitions,
in a particular technical document is a problem that has previously been tackledadsing
hocheuristics. The information desired—acronyms and their definitions—is relational, and
this distinguishes it from the text mining problems discussed above.

It is not immediately obvious how compression can assist in locating relational infor-
mation such as this. Language statistics certainly differ between acronyms and running
text, because the former have a higher densitgapital letters and a far higher density
of non-initial capital letters. However, it seems unlikely that acronym definitions will be
recognized reliably on this basis: they will not be readily distinguished from ordinary lan-
guage by their letter statistics.

We have experimented with coding potential acronyms with respect to the initial letters
of neighboring words, and using the compression achieved to signal the occurrence of an
acronym and its definition [34]. Our criterion is whether a candidate acronym could be
coded more efficiently using a special model than it is using a regular text compression
scheme. A phrase is declared to be an acronym definition if the discrepancy between the
number of bits required to code it using a geigourpose compressor and the acronym
model exceeds a certain threshold.
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We first pre-filter the data by identifying acronym candidates: for initial work we de-
cided to consider words in upper case only. Then we determined two windows for each
candidate, one containg 16 preceding words and the other 16 following words. This range
covered all acronym definitions in our test data.

5.3.1. Compressing the acronyms

Candidate acronyms are coded using a group of models that express the acronym in
terms of the leading letters of the words on either side. This group comprises four separate
models. The first tells whether the acronym precedes or follows its definition. The second
gives the distance from the acronym to the first word of the definition. The third identifies
a sequence of words in the text by a set of offsets from the previous word. The fourth gives
the number of letters to be taken from each word. Each of these models is an order-0 PPM
model with a standard escape mechanism.

After compressing the acronym candidates with respect to their context, all legal en-
codings for each acronym are compared arddhe that compresses best is selected. For
comparison, we compress the acronym ushegtext model, taking the preceding context
into account. The candidate is declared to be an acronym if

bits acronym model< p
— PR
bitS text model

for some predetermined thresholdAlthough subtracting the number of bits seems more
easily justified than using the ratio between them, in fact far better results were obtained
using the ratio method. We believe that the reason for this is linked to the curious fact that,
using a standard text model, longer acronyms tend to compress into fewer bits than do
shorter ones. While short acronyms are often spelt out, long ones tend to be pronounced as
words. This affects the choice of letters: longer acronyms more closely resemble “natural”
words.

5.3.2. Experimental results

To test these ideas, we conducted an experiment on a sizable sample of technical re-
ports, and calculated recall and precisiondoronym identification. The operating point
on the recall/precision curve can be adjusted by varyinghile direct comparison with
other acronym-extraction methods is notspible because of the use of different text
corpora, our scheme performs well and provides a viable basis for extracting acronyms
and their definitions from plain text. Compared to other methods, it reduces the need to
come up with heuristics for deciding wh to accept a candidate acronym—although some
prior choices are made when deciding how to code acronyms with respect to their defini-
tions.

5.4. Structure recognition

We have shown that while compression is a useful tool for many token classifica-
tion tasks, it is less impressive for documeategorization. As a discriminant, overall
compression tends to weaken as the size of individual items grows, because a single holis-
tic measure may become less appropriate. Some decisions depend on the occurrence or
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non-occurrence of a few special words, which makes feature selection essential. Even in
token discrimination, different kinds of token may be distinguishable only by the con-
text in which they occur—for example, author’s names and editor's names no doubt enjoy
identical statistical properties, but are distinguished in bibliographic references by local
context.

The size of individual tokens can often be reduced by extending the techniques de-
scribed above to work hierarchically. This allows more subtle interactions to be captured.
Names are decomposable into forenames, initial, surname; email addresses into username,
domain, and top-level domain; and fax numbers contain embedded phone numbers. After
analyzing the errors made during the generic entity extraction experiments of Section 4,
we refined the markup of the training documents to use these decompositions. For in-
stance:

Name <n><f>lan</f>_<i>H</i>. _<s>Wtten</s></n>
Email <e><u>i hw/ u>@d>cs. wai kat 0. ac</ d>. <t >nz</t ></ e>
Fax <f ><p>+64- 7- 856- 2889</ p>_f ax</f >

We use the term “soft parsing” to denote inference of what is effectively a grammar from
example strings, using exactly the same compression methodology as before. During train-
ing, models are built for each component ofteustured item, as well as the item itself.

For example, thdorenamemodel is trained on all forenaes that appear in the training
data, while thenamemodel is trained on patterns likerenamefollowed by space fol-

lowed bymiddle initial followed by period and space followed lsyrname where each

of the lower-level items—-ferename middle initial andsurname—are treated by PPM as

a single “character” that identifies the kirof token that occurs. When the test file is
processed to locate tokens in context, these new tags are inserted into it too. The algo-
rithm described in Sectin4 accommodates nested tokens without any modification at
all.

Initial results are mixed. Some errors are corrected (e.g., some names that had been
confused with other token types are now correctly marked), but other problems remain
(e.g., the fax/phone number mix-up) and a few new ones emerge. Some are caused by the
pruning strategies used; others are due to insufficient training data. Despite inconclusive
initial results, we believe that soft parsing will prove invaluable in situations with strong
hierarchical context (e.qg., references and tables).

It is possible that the technique can be extended to the other kinds of tasks considered
above. For example, we could mark up an acronym, with its definition. Websaeies
example above might look like

Acronym... of _a_seri es_of _words, _as_<a>radar, _from
<d>r adi o_det ecti ng_and_r angi ng</ d></ a>.

To capture the essential feature of acronyms—that the word being defined is built from
characters in the definition—the search aiton needs to be extended to consider this
possibility.
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In text categorization, important features could be highlighted. The word “wheat”,
which distinguishes articles omheatfrom other articles in thgrain category, could be
marked in the training data—or by an autdio&ature selection process—and the markup
inferred in the test data. Such techniques miignacompression-based generalization to
tackle problems that require feature selection.

6. Conclusions

Text mining is a burgeoning new area that is likely to become increasingly important in
future. This paper has argued, through examples, that compression forms a sound unifying
principle that allows many text mining problems to be tacked adaptively.

Word-based and character-based compression methods can be applied to different kinds
of text mining tasks. Phrase hierarch@m be extracted from documents using recently-
developed algorithms for inferring hierarchies of repetitions in sequences, all of which
have been proposed for text compression. Although we have not focused on applications
of phrase hierarchies in this paper, they are beginning to be applied in a diverse range of
areas, including browsing in digital libraries.

The extraction of different kinds of entisdrom text is commonly approached through
the use of hand-tailored heuristics. However, adaptive methods offer significant advantages
in construction, debugging, dmaintenance. While they suffer from the necessity to mark
up large numbers of training documents, this can be alleviated by priming the compres-
sion models with appropriate data—lists of nayeddresses, etc.—gathered from external
sources.

Other kinds of text-mining problems also succumb to compression-based techniques:
examples are word segmentation and acronym extraction. Some, notably text categoriza-
tion, seem less well-suited to the holistic approach that compression offers. However,
hierarchical decomposition can be used to strengthen context, and perhaps even to incor-
porate the results of automatic feature selection.

Adaptive text mining using compression-based techniques is in its infancy. Watch it
grow.
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